J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (4): 623-630.DOI: 10.1016/j.jmst.2018.09.070
• Orginal Article • Previous Articles Next Articles
Liuliu Hana, Kun Lia, Cheng Qiana, Jingwen Qiub, Chengshang Zhoua*(), Yong Liua*(
)
Received:
2018-03-30
Accepted:
2018-06-21
Online:
2019-04-05
Published:
2019-01-28
Contact:
Zhou Chengshang,Liu Yong
Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. J. Mater. Sci. Technol., 2019, 35(4): 623-630.
Samples | Powders composition (wt.%) | C content after SPS (wt.%) | |
---|---|---|---|
Ball milled FeMnNiAl powder | Carbon | ||
C0 | 100 | / | 0.28 |
C1 | 99 | 1 | 0.86 |
C2 | 98 | 2 | 1.53 |
C3 | 97 | 3 | 2.50 |
C4 | 96 | 4 | 3.45 |
Table 1 Contents of carbon in different steels.
Samples | Powders composition (wt.%) | C content after SPS (wt.%) | |
---|---|---|---|
Ball milled FeMnNiAl powder | Carbon | ||
C0 | 100 | / | 0.28 |
C1 | 99 | 1 | 0.86 |
C2 | 98 | 2 | 1.53 |
C3 | 97 | 3 | 2.50 |
C4 | 96 | 4 | 3.45 |
Fig. 5. (a) The plastic section in the compression curves of C0 and C3 steels at room temperature, and (b) the compression curves of C3 steel at elevated temperatures.
Fig. 6. COFs with sliding time and their tribological properties (a) COF of C0, C1, C2, C3 and C4 at room temperature, (b) hardness, wear rate and average COFs, (c) the COFs of C3 at different testing temperatures and (d) wear rate and averages COF of the C3 steels with temperature.
Fig. 7. Morphologies of worn surfaces: (a), (b), (c) and (d) are of C3 steel tested at 200, 400, 600 and 800 °C. The compositions of the marked regions are listed in Table 2.
Fig. 8. 3D profiles of the worn scars and profilometer traces across the worn tracks of the C3 steel: (a), (b), (c) and (d) are tested in air at 200, 400, 600 and 800 °C, respectively.
Regions | Compositions (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Fe | Mn | Ni | Al | C | O | Si | |
1 | 42.3 ± 0.6 | 9.7 ± 0.2 | 3.0 ± 0.1 | 5.6 ± 0.2 | 4.0 ± 0.4 | 34.1 ± 0.5 | 1.3 ± 0.1 |
2 | 50.0 ± 1.0 | 11.3 ± 0.4 | 3.4 ± 0.2 | 6.3 ± 0.3 | 5.3 ± 0.6 | 22.9 ± 0.9 | 0.8 ± 0.1 |
3 | 49.1 ± 0.7 | 11.4 ± 0.4 | 3.0 ± 0.3 | 6.3 ± 0.2 | 4.8 ± 0.5 | 24.5 ± 1.7 | 0.9 ± 0.1 |
4 | 41.8 ± 0.4 | 10.2 ± 0.1 | 2.8 ± 0.2 | 5.5 ± 0.1 | 3.9 ± 0.1 | 34.5 ± 0.3 | 1.3 ± 0.1 |
5 | 40.6 ± 2.3 | 9.7 ± 0.5 | 1.9 ± 0.1 | 4.0 ± 0.1 | 3.4 ± 0.3 | 38.3 ± 1.9 | 2.1 ± 0.9 |
6 | 42.0 ± 1.4 | 10.3 ± 0.2 | 2.4 ± 0.1 | 4.5 ± 0.2 | 3.4 ± 0.4 | 34.7 ± 0.8 | 2.7 ± 0.2 |
7 | 42.1 ± 1.1 | 12.1 ± 0.9 | 0.2 ± 0.1 | 0.3 ± 0.1 | 3.7 ± 0.3 | 40.1 ± 0.6 | 1.5 ± 0.2 |
Table 2 Compositions of the regions of the worn surfaces marked in Fig. 7.
Regions | Compositions (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Fe | Mn | Ni | Al | C | O | Si | |
1 | 42.3 ± 0.6 | 9.7 ± 0.2 | 3.0 ± 0.1 | 5.6 ± 0.2 | 4.0 ± 0.4 | 34.1 ± 0.5 | 1.3 ± 0.1 |
2 | 50.0 ± 1.0 | 11.3 ± 0.4 | 3.4 ± 0.2 | 6.3 ± 0.3 | 5.3 ± 0.6 | 22.9 ± 0.9 | 0.8 ± 0.1 |
3 | 49.1 ± 0.7 | 11.4 ± 0.4 | 3.0 ± 0.3 | 6.3 ± 0.2 | 4.8 ± 0.5 | 24.5 ± 1.7 | 0.9 ± 0.1 |
4 | 41.8 ± 0.4 | 10.2 ± 0.1 | 2.8 ± 0.2 | 5.5 ± 0.1 | 3.9 ± 0.1 | 34.5 ± 0.3 | 1.3 ± 0.1 |
5 | 40.6 ± 2.3 | 9.7 ± 0.5 | 1.9 ± 0.1 | 4.0 ± 0.1 | 3.4 ± 0.3 | 38.3 ± 1.9 | 2.1 ± 0.9 |
6 | 42.0 ± 1.4 | 10.3 ± 0.2 | 2.4 ± 0.1 | 4.5 ± 0.2 | 3.4 ± 0.4 | 34.7 ± 0.8 | 2.7 ± 0.2 |
7 | 42.1 ± 1.1 | 12.1 ± 0.9 | 0.2 ± 0.1 | 0.3 ± 0.1 | 3.7 ± 0.3 | 40.1 ± 0.6 | 1.5 ± 0.2 |
Materials | C0 | C3 | CoCrFeNi BaF2/ CaF2[ | CoCrFeNi Graphite/MoS2[ |
---|---|---|---|---|
Density (g/cm3) | 6.82 ± 0.03 | 6.49 ± 0.03 | 7.51 ± 0.07 | 7.39 ± 0.05 |
Relative density (%) | 99.8 ± 0.1 | 99.2 ± 0.1 | 99.3 | / |
Hardness (HV) | 576 ± 15 | 621 ± 7 | 151 ± 7 | 271 ± 14 |
Yield strength (MPa) | 1004 ± 8 | 1437 ± 41 | 468 ± 8 | 610 ± 13 |
Compressive strength (MPa) | 1969 ± 31 | 2286 ± 64 | 787 ± 9 | 921 ± 16 |
Ultimate plasticity strain (%) | 22.8 ± 0.3 | 16.8 ± 1.1 | 15.8 ± 1.1 | 7.5 ± 1.2 |
Fracture toughness (MPa m1/2) | 20.3 ± 0.3 | 17.7 ± 0.2 | 18.3 ± 1.9 | 14.3 ± 1.7 |
Table 3 Mechanical properties of C0 and C3 steels and other PM HEA self-lubricating materials.
Materials | C0 | C3 | CoCrFeNi BaF2/ CaF2[ | CoCrFeNi Graphite/MoS2[ |
---|---|---|---|---|
Density (g/cm3) | 6.82 ± 0.03 | 6.49 ± 0.03 | 7.51 ± 0.07 | 7.39 ± 0.05 |
Relative density (%) | 99.8 ± 0.1 | 99.2 ± 0.1 | 99.3 | / |
Hardness (HV) | 576 ± 15 | 621 ± 7 | 151 ± 7 | 271 ± 14 |
Yield strength (MPa) | 1004 ± 8 | 1437 ± 41 | 468 ± 8 | 610 ± 13 |
Compressive strength (MPa) | 1969 ± 31 | 2286 ± 64 | 787 ± 9 | 921 ± 16 |
Ultimate plasticity strain (%) | 22.8 ± 0.3 | 16.8 ± 1.1 | 15.8 ± 1.1 | 7.5 ± 1.2 |
Fracture toughness (MPa m1/2) | 20.3 ± 0.3 | 17.7 ± 0.2 | 18.3 ± 1.9 | 14.3 ± 1.7 |
|
[1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[4] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[5] | Kui Wang, Jingfeng Wang, Xiaoxu Dou, Yuanding Huang, Norbert Hort, Sarkis Gavras, Shijie Liu, Yanwu Cai, Jinxing Wang, Fusheng Pan. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52(0): 72-82. |
[6] | Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2020, 42(0): 143-155. |
[7] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
[8] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park, Unhae Lee. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 57(0): 123-130. |
[9] | Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56. |
[10] | Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 124-134. |
[11] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[12] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
[13] | Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification [J]. J. Mater. Sci. Technol., 2020, 41(0): 178-186. |
[14] | Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4 [J]. J. Mater. Sci. Technol., 2020, 39(0): 161-166. |
[15] | Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 131-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||