Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (4): 623-630    DOI: 10.1016/j.jmst.2018.09.070
Orginal Article Current Issue | Archive | Adv Search |
Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels
Liuliu Hana, Kun Lia, Cheng Qiana, Jingwen Qiub, Chengshang Zhoua*(), Yong Liua*()
a State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
b Materials Science and Engineering School, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
Download:  HTML  PDF(5423KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The good combination of mechanical and tribological properties for self-lubricating materials is crucial. In this work, novel self-lubricating Fe-16.4Mn-4.8Ni-9.9Al-xC (wt%) steels containing graphite phase were fabricated using mechanical alloying and spark plasma sintering. The compositions of the steels were designed by using thermodynamic calculation, and the effect of carbon addition on the microstructure was further investigated. The steel possesses high hardness of 621 HV, high yield strength of 1437 MPa and good fracture toughness at room temperature. The yield strengths are still above 600 MPa at 600 °C. The tribological behavior and mechanical properties from room temperature to 800 °C were studied, and the wear mechanisms at elevated temperatures were discussed. The steel has a stable friction coefficient of 0.4 and wear rate in a magnitude of 10-6 mm3/N·m below 600 °C. The good tribological properties of the steels were mainly attributed to the high hardness, lubrication of graphite and stable surface oxide layer.

Key words:  Metal matrix composites      Mechanical alloying      Mechanical properties      Tribological properties      Alloy design     
Received:  30 March 2018     
Corresponding Authors:  Zhou Chengshang,Liu Yong     E-mail:  chengshang.zhou@csu.edu.cn;yonliu@csu.edu.cn

Cite this article: 

Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels. J. Mater. Sci. Technol., 2019, 35(4): 623-630.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2018.09.070     OR     https://www.jmst.org/EN/Y2019/V35/I4/623

Samples Powders composition (wt.%) C content after SPS (wt.%)
Ball milled FeMnNiAl powder Carbon
C0 100 / 0.28
C1 99 1 0.86
C2 98 2 1.53
C3 97 3 2.50
C4 96 4 3.45
Table 1  Contents of carbon in different steels.
Fig. 1.  The phase diagram of Fe-16.4Mn-4.8Ni-9.9 Al-xC system based on the CALPHAD.
Fig. 2.  XRD patterns of (a) Fe-16.4Mn-4.8Ni-9.9Al powders with different milling time and (b) the SPS-ed steels.
Fig. 3.  Microstructures of (a) C0, (b) C1, (c) C2, (d) C3, (e) magnified image of (d), and (f) C4 sintered at 1100 °C.
Fig. 4.  Typical SEM-BSE image and the corresponding elemental mappings in EPMA of Fe, Al, Ni, Mn, C in C3 steel.
Fig. 5.  (a) The plastic section in the compression curves of C0 and C3 steels at room temperature, and (b) the compression curves of C3 steel at elevated temperatures.
Fig. 6.  COFs with sliding time and their tribological properties (a) COF of C0, C1, C2, C3 and C4 at room temperature, (b) hardness, wear rate and average COFs, (c) the COFs of C3 at different testing temperatures and (d) wear rate and averages COF of the C3 steels with temperature.
Fig. 7.  Morphologies of worn surfaces: (a), (b), (c) and (d) are of C3 steel tested at 200, 400, 600 and 800 °C. The compositions of the marked regions are listed in Table 2.
Fig. 8.  3D profiles of the worn scars and profilometer traces across the worn tracks of the C3 steel: (a), (b), (c) and (d) are tested in air at 200, 400, 600 and 800 °C, respectively.
Regions Compositions (wt.%)
Fe Mn Ni Al C O Si
1 42.3 ± 0.6 9.7 ± 0.2 3.0 ± 0.1 5.6 ± 0.2 4.0 ± 0.4 34.1 ± 0.5 1.3 ± 0.1
2 50.0 ± 1.0 11.3 ± 0.4 3.4 ± 0.2 6.3 ± 0.3 5.3 ± 0.6 22.9 ± 0.9 0.8 ± 0.1
3 49.1 ± 0.7 11.4 ± 0.4 3.0 ± 0.3 6.3 ± 0.2 4.8 ± 0.5 24.5 ± 1.7 0.9 ± 0.1
4 41.8 ± 0.4 10.2 ± 0.1 2.8 ± 0.2 5.5 ± 0.1 3.9 ± 0.1 34.5 ± 0.3 1.3 ± 0.1
5 40.6 ± 2.3 9.7 ± 0.5 1.9 ± 0.1 4.0 ± 0.1 3.4 ± 0.3 38.3 ± 1.9 2.1 ± 0.9
6 42.0 ± 1.4 10.3 ± 0.2 2.4 ± 0.1 4.5 ± 0.2 3.4 ± 0.4 34.7 ± 0.8 2.7 ± 0.2
7 42.1 ± 1.1 12.1 ± 0.9 0.2 ± 0.1 0.3 ± 0.1 3.7 ± 0.3 40.1 ± 0.6 1.5 ± 0.2
Table 2  Compositions of the regions of the worn surfaces marked in Fig. 7.
Fig. 9.  Micro-beam XRD patterns of C3 steel after testing at elevated temperatures corresponding to the regions in Fig. 7.
Fig. 10.  Hardness-density diagram of Fe-matrix materials and self-lubricating materials.
Materials C0 C3 CoCrFeNi
BaF2/ CaF2[5] [5]
CoCrFeNi
Graphite/MoS2[6] [6]
Density (g/cm3) 6.82 ± 0.03 6.49 ± 0.03 7.51 ± 0.07 7.39 ± 0.05
Relative density (%) 99.8 ± 0.1 99.2 ± 0.1 99.3 /
Hardness (HV) 576 ± 15 621 ± 7 151 ± 7 271 ± 14
Yield strength (MPa) 1004 ± 8 1437 ± 41 468 ± 8 610 ± 13
Compressive strength (MPa) 1969 ± 31 2286 ± 64 787 ± 9 921 ± 16
Ultimate plasticity strain (%) 22.8 ± 0.3 16.8 ± 1.1 15.8 ± 1.1 7.5 ± 1.2
Fracture toughness
(MPa m1/2)
20.3 ± 0.3 17.7 ± 0.2 18.3 ± 1.9 14.3 ± 1.7
Table 3  Mechanical properties of C0 and C3 steels and other PM HEA self-lubricating materials.
[1] M.T. Hayajneh, A.M. Hassan, A.T. Mayyas, J. Alloys Compd. 478(2009)559-565.
[2] M. Niu, Q. Bi, S. Zhu, J. Yang, W. Liu, J. Alloys Compd. 555(2013) 367-374.
[3] Z. Li, S. Di, J. Alloys Compd. 719(2017) 1-14.
[4] G. Cui, L. Lu, J. Wu, Y. Liu, G. Gao, J. Alloys Compd. 611(2014) 235-242.
[5] A. Zhang, J. Han, B. Su, J. Meng, J. Alloys Compd. 725(2017) 700-710.
[6] A. Zhang, J. Han, B. Su, P. Li, Meng, J. Mater. Des. 114(2017) 253-263.
[7] X. Shi, J. Yao, Z. Xu, W. Zhai, S. Song, M. Wang, Mater. Des. 53(2014) 620-633.
[8] X. Shi, S. Song, W. Zhai, M. Wang, Z. Xu, J. Yao, Mater. Des. 55(2014) 75-84.
[9] F. Li, J. Cheng, Z. Qiao, J. Ma, S. Zhu, Tribol. Int. 49(2013) 573-577.
[10] X. Shi, M. Wang, W. Zhai, Z. Xu, Q. Zhang, Y. Chen, Mater. Des. 45(2013)179-189.
[11] G. Cui, J. Han, G. Wu, Wear. 346-347(2016) 116-123.
[12] P. Li, A. Wang, C.T. Liu, J. Alloys Compd. 694(2017) 55-60.
[13] S. Riva, A. Tudball, S. Mehraban, N.P. Lavery, S.G.R. Brown, K.V. Yusenko, J.Alloys Compd. 730(2018) 544-551.
[14] X. Fu, C.A. Schuh, E.A. Olivetti, Scr. Mater. 138(2017) 145-150.
[15] D. Raabe, C.C. Tasan, H. Springer, M. Bausch, Steel Res. Int. 86(2015)1127-1138.
[16] B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, Science 357 (2017) 1029-1032.
[17] J. Guo, L. Ai, T. Wang, Mater. Sci. Eng. A 715 (2017) 359-369.
[18] X. Long, F. Zhang, Z. Yang, B. Lv, Mater. Sci. Eng. A 715 (2018) 10-16.
[19] S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77.
[20] Z. Wang, I. Baker, Mater. Sci. Eng. A 693 (2017) 101-110.
[21] I. Baker, F. Meng, Acta Mater. 95(2015) 124-131.
[22] P.L. Roca, A. Baruj, C.E. Sobrero, J.A. Malarría, M. Sade, J. Alloys Compd. 708(2017) 422-427.
[23] J. Andersson, T. Helander, L.H. Glund, P. Shi, B. Sundman, P.L. Roca, A. Baruj,C.E. Sobrero, J.A. Malarría, M. Sade, Thermo-Calc DICTRA 26 (2002) 273-312.
[24] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, Acta Mater. 116(2016) 332-342.
[25] J. Jeon, S. Nam, S. Kang, J. Shin, H. Choi, Mater. Des. 92(2016) 73-78.
[26] H. Ghasemi-Nanesa, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad, S.H. Pishbin, Mater. Sci. Eng. A 527 (2010) 7552-7556.
[27] Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, S.K. Chen, J. Alloys Compd. 481(2009)768-775.
[28] R. Amini, A. Shamsipoor, M. Ghaffari, M. Alizadeh, A.K. Okyay, Mater. Charact.84(2013) 169-174.
[29] S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89(2017) 345-391.
[30] Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, K. Ishida, ISIJ Int. 50(2010)893-899.
[31] A.R. Riahi, A.T. Alpas, Wear 255 (2003) 401-409.
[32] S. Szczepanik, P. Nikiel, S.C. Mitchell, R. Kawalla, Arch. Civil Mech. Eng. 15(2015) 301-307.
[33] J. Victoria-Hernández, D. Hernández-Silva, M. Vite-Torres, Wear 267 (2009) 340-344.
[34] X. Zhang, J. Ma, L. Fu, S. Zhu, F. Li, J. Yang, Tribol. Int. 61(2013) 48-55.
[35] X. Zhang, J. Cheng, M. Niu, H. Tan, W. Liu, J. Yang, Tribol. Int. 101(2016) 81-87.
[36] S. Taktak, Surf. Coat. Technol. 201(2006) 2230-2239.
[1] Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides[J]. 材料科学与技术, 2020, 37(0): 104-113.
[2] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[3] Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures[J]. 材料科学与技术, 2020, 43(0): 126-134.
[4] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[5] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[6] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[7] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[8] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[9] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[10] Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654[J]. 材料科学与技术, 2020, 42(0): 143-155.
[11] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[12] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
[13] Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification[J]. 材料科学与技术, 2020, 41(0): 178-186.
[14] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[15] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.