Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 41 Issue (0): 178-186    DOI: 10.1016/j.jmst.2019.08.053
Research Article Current Issue | Archive | Adv Search |
Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification
Ze-Tian Liuab, Bing-Yu Wangb, Cheng Wangabc*(), Min Zhaabc, Guo-Jun Liub, Zhi-Zheng Yangb, Jin-Guo Wangb, Jie-Hua Lid, Hui-Yuan Wangabc*()
aState Key Laboratory of Super Hard Materials, Jilin University, Changchun 130012, China
bKey Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, Changchun 130025, China
cInternational Center of Future Science, Jilin University, Changchun 130012, China
dInstitute of Casting Research, Montanuniversität Leoben, Leoben, A-8700, Austria
Download:  HTML  PDF(3941KB) 
Export:  BibTeX | EndNote (RIS)      

Al-Mg-Si (AA6xxx) series alloys have been used widely in automotive industry for lightweight purpose. This work focuses on developing a short process for manufacturing Al-0.5Mg-1.3Si (wt.%) alloy sheets with good mechanical properties. Hereinto, a preparation route without homogenization was proposed on the basis of sub-rapid solidification (SRS) technique. The sample under SRS has fine microstructure and higher average partition coefficients of solute atoms, leading to weaker microsegregation owing to the higher cooling rate (160 °C/s) than conventional solidification (CS, 30 °C/s). Besides, Mg atoms tend to be trapped in Al matrix under SRS, inducing suppression of Mg2Si, and promoting generation of AlFeSi phase. After being solution heat treated (T4 state), samples following the SRS route have lower yield strength compared with that by CS route, indicating better formability in SRS sample. After undergoing pre-strain and artificial aging (T6 state), the SRS samples have comparable yield strength to CS samples, satisfying the service requirements. This work provides technological support to industrially manufacture high performance AA6xxx series alloys with competitive advantage by a novel, short and low-cost process, and open a door for the further development of twin-roll casting based on SRS technique in industries.

Key words:  Al-Mg-Si alloy      Sub-rapid solidification      Microstructure      Mechanical properties      Short process     
Received:  28 May 2019     
Corresponding Authors:  Wang Cheng,Wang Hui-Yuan     E-mail:;

Cite this article: 

Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification. J. Mater. Sci. Technol., 2020, 41(0): 178-186.

URL:     OR

Fig. 1.  Schematic diagram for the three different fabrication processes.
Fig. 2.  (a) Schematic diagram of temperature measuring system; (b) entire cooling curves of SRS and CS samples; (c) detail of initial stage on SRS cooling curve; (d) detail of initial stage on CS cooling curve.
Fig. 3.  Optical micrograph (OM) of (a) as-cast SRS sample, (b) as-cast CS sample and (c) as-homogenized CS sample.
Fig. 4.  Backscattered electron imaging (BSE) micrographs observed in as-cast samples of (a) SRS and (b) CS; (line 1), (line 2) corresponds to the composition distribution profiles of Fe, Mg, Si in (a) and (b), respectively.
Sample kMg kSi kFe
SRS 0.65 0.28 0.07
CS 0.51 0.24 0.04
Table 1  Average partition coefficients of Mg, Si, Fe elements under SRS and CS processes.
Fig. 5.  OM micrographs of cold-rolled (a) SRS and (b) as-homogenized CS samples.
Fig. 6.  (a) and (c) EBSD inverse pole figure (IPF) maps of SRS-T4 and CS-T4; (b) and (d) correspond to grain size histogram of (a) and (c).
Fig. 7.  TEM micrographs and corresponding selected area electron diffraction (SAED) patterns obtained from the given particles: (a) SRS-T4, (b) CS-T4; TEM micrographs and high resolution TEM images (HRTEM) of the given particles: (c) SRS-T6 and (d) CS-T6.
Fig. 8.  Typical EBSD inverse pole figure maps of (a) SRS-T6 and (c) CS-T6; (b) and (d) corresponding misorientation profiles measured along the lines in (a) and (c).
Fig. 9.  Typical tensile engineering stress-strain curves of SRS, CS and CSN samples at (a) T4 and (b) T6 states.
Sample YS (MPa) UTS (MPa) El. (%) Source
T4 T6 T4 T6 T4 T6
SRS 85 ± 1 248 ± 6 194 ± 4 295 ± 5 28.0 ± 0.5 16.5 ± 1.0 This work
CS 113 ± 2 238 ± 10 225 ± 8 288 ± 11 27.0 ± 0.5 17.5 ± 1.0 This work
CSN 119 ± 6 230 ± 10 230 ± 13 286 ± 9 23.0 ± 1.0 14.0 ± 1.0 This work
AA6022 118 238 228 27.5 [22]
157 171 [23]
138 200 27.5 [24]
Table 2  Mechanical properties of SRS, CS and CSN samples at T4 and T6 states along with those of commercial alloys in other literatures.
[1] J. Hirsch, T. Al-Samman, Acta Mater. 61(2013) 818-843.
[2] V.M. Simões, M.C. Oliveira, H. Laurent, L.F. Menezes, J. Manuf. Processes 38 (2019) 266-278.
[3] I. Polmear, D. StJohn, J.F. Nie, M. Qian, London, 2017, pp. 163-164.
[4] E. Sjölander, S. Seifeddine, J. Mater. Process. Technol. 210(2010) 1249-1259.
[5] Y. Birol, E. Gokcil, M.A. Guvenc, S. Akdi, Mater. Sci. Eng. A 674 (2016) 25-32.
[6] I.L. Ferreira, A.L.S. Moreira, J.A.S. Aviz, T.A. Costa, O.L. Rocha, A.S. Barros, A. Garcia, J. Manuf. Processes 35 (2018) 634-650.
[7] L.Y. Zhang, Z.J. Zhan, Y.Z. Jia, W.K. Wang, B.D. Zhou, J. Mater. Process. Technol. 187-8(2007) 791-793.
[8] H.T. Teng, X.L. Zhang, Z.T. Zhang, T.J. Li, S. Cockcroft, Mater. Charact. 60(2009) 482-486.
[9] A. Ziewiec, E. Tasak, A. Zielińska-Lipiec, K. Ziewiec, J. Kowalska, J. Alloys. Compd. 615(2014) S627-632.
[10] X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, F. Liu, Mater. Sci. Eng. A 753 (2019) 168-178.
[11] H.J. Zhang, D.F. Zhang, C.H. Ma, S.F. Guo, Mater. Lett. 92(2013) 45-48.
[12] D. Eskin, Y. Du, D. Ruvalcaba, L. Katgerman, Mater. Sci. Eng. A 405 (2005) 1-10.
[13] Y. Birol, J. Alloys. Compd. 486(2009) 168-172.
[14] X.F. Wang, M.X. Guo, J.R. Luo, J. Zhu, J.S. Zhang, L.Z. Zhuang, Mater. Charact. 134(2017) 123-133.
[15] M. Hosseinifar, D. Malakhov, Metall. Mater. Trans. A 42 (2011) 825-833.
[16] H. Becker, T. Bergh, P.E. Vullum, A. Leineweber, Y. Li, J. Alloys. Compd. 780(2019) 917-929.
[17] S. Kumar, P.S. Grant, K.A.Q. O’Reilly, Metall. Mater. Trans. A 47 (2016) 3000-3014.
[18] T. Gao, Z.Q. Li, Y.X. Zhang, J.Y. Qin, X.F. Liu, Mater. Des. 134(2017) 71-80.
[19] M. Ganesan, D. Dye, P.D. Lee, Metall. Mater. Trans. A 36 (2005) 2191-2204.
[20] W.J. Poole, X. Wang, J.D. Embury, D.J. Lloyd, Mater. Sci. Eng. A 755 (2019) 307-317.
[21] Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, H.J. Roven, Metall. Mater. Trans. A 41 (2010) 787-794.
[22] R.G. Kamat, J.F. Butler Jr., S.J. Murtha, F.S. Bovard, Mater. Sci. Forum 396-402(2002) 1591-1596.
[23] L.P. Ding, Y. He, Z. Wen, P.Z. Zhao, Z.H. Jia, Q. Liu, J. Alloys. Compd. 647(2015) 238-244.
[24] K. Tokuda, S. Kumai, K. Suzuki, A. Ishihara, T. Haga, J. Jpn. Inst. Light Met. 10(2007) 444-449.
[25] M.J. Aziz, J. Appl. Phys. 53(1982) 1158-1168.
[26] P.V. Evans, A.L. Greer, Mater. Sci. Eng. 98(1988) 357-361.
[27] ASM International, Alloy Phase Diagrams, first ed., ASM International, American, 1992, pp. 294-322.
[28] L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, K. Liu, J. Mater. Sci. Technol. 34(2018) 541-550.
[29] K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia, J.M. Schoenung, Acta Mater. 103(2016) 153-164.
[30] L. Liu, J.T. Jiang, B. Zhang, W.Z. Shao, L. Zhen, J. Mater. Sci. Technol. 35(2019) 962-971.
[31] ASM International, Properties and Selection: Nonferrous Alloys and Special-purpose Materials, third ed., ASM International, American, 1990, pp. 222-223.
[32] N. Hansen, Scr. Mater. 51(2004) 801-806.
[33] N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, D.L. Chen, J. Mater. Sci. Technol. 34(2018) 1110-1118.
[34] T.H. Courtney, Mechanical Behaviour of Materials, second ed., 2005, pp. 183, Waveland, Illinois.
[35] M. Zha, Y.J. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Acta Mater. 84(2015) 42-54.
[36] I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys: Metallurgy of the Light Metals, fifth ed., Elsevier, London, 2017, pp. 63.
[1] Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms[J]. 材料科学与技术, 2020, 46(0): 201-210.
[2] Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire[J]. 材料科学与技术, 2020, 45(0): 44-48.
[3] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[4] P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. 材料科学与技术, 2020, 45(0): 215-229.
[5] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[6] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[7] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[8] H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys[J]. 材料科学与技术, 2020, 46(0): 136-138.
[9] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[10] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[11] Gang Lu, Shuai Nie, Jianjun Wang, Ying Zhang, Tianhai Wu, Yujie Liu, Chunming Liu. Enhancing the bake-hardening responses of a pre-aged Al-Mg-Si alloy by trace Sn additions[J]. 材料科学与技术, 2020, 40(0): 107-112.
[12] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
[13] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[14] Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys[J]. 材料科学与技术, 2020, 40(0): 47-53.
[15] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.