J. Mater. Sci. Technol. ›› 2022, Vol. 98: 72-86.DOI: 10.1016/j.jmst.2021.05.008
• Research Article • Previous Articles Next Articles
Yanxi Lia, Pengfei Gaoa,*(
), Jingyue Yua, Shuo Jina, Shuqun Chenb, Mei Zhana
Received:2021-02-07
Revised:2021-02-07
Accepted:2021-02-07
Published:2022-01-30
Online:2022-01-25
Contact:
Pengfei Gao
About author:*E-mail address: gaopengfei@nwpu.edu.cn (P. Gao).Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation[J]. J. Mater. Sci. Technol., 2022, 98: 72-86.
| Al | Zr | Mo | V | Si | C | Fe | O | N | H | Ti |
|---|---|---|---|---|---|---|---|---|---|---|
| 6.63-6.75 | 2.23-2.27 | 1.73-1.80 | 2.24-2.27 | <0.04 | <0.006 | 0.14 | 0.12 | <0.002 | 0.002 | Balance |
Table 1 The chemical composition of TA15 alloy (wt%).
| Al | Zr | Mo | V | Si | C | Fe | O | N | H | Ti |
|---|---|---|---|---|---|---|---|---|---|---|
| 6.63-6.75 | 2.23-2.27 | 1.73-1.80 | 2.24-2.27 | <0.04 | <0.006 | 0.14 | 0.12 | <0.002 | 0.002 | Balance |
Fig. 4. Configuration of slip systems on the occurrence of slip transfer [10] (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 5. SEM photomicrographs and the corresponding IPF maps of the AOI at various strains: (a) 0.78%; (b) 1.94%; (c) 4.35%. The horizontal direction is the tensile axis (TA) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 7. The rotation of αl grains with coarse slip bands marked by the yellow ellipse in Fig. 5(b): (a) Grain A; (b) Grain B; (c) Grain C (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 10. Statistics of the identified slip activity of αp grains at different strains (a) and the corresponding Schmid factor distribution of activated slip systems at strains of 0.78% (b), 1.94% (c) and 4.35% (d).
Fig. 11. Unit triangle with iso-curves of the Schmid factor for different slip systems in αp grains without slip lines at the strain of 0.78%: (a) basal slip systems; (b) prismatic slip systems.
Fig. 12. Statistics of the identified slip activity of αl grains at different strains (a) and the corresponding Schmid factor distribution of activated slip systems at strains of 0.78% (b), 1.94% (c) and 4.35% (d).
Fig. 13. SEM morphology of local region of AOI containing slip transfer across αp/αp boundaries (a) and the corresponding IPF map (b) at the strain of 4.35%.
| Possible slip system | 1BAS→2 | 1BAS→10 | 2PRI→16 | 2PRI→17 | 8BAS→7 | 9BAS→10 | 9PYR→10 | 9 BAS→16 | 9PYR→16 | 17PYR→7 |
|---|---|---|---|---|---|---|---|---|---|---|
| basal | m′=0.51 m=0.44 | m′=0.3 m=0.26 | m′=0.14 m=0.32 | m′=0.66 m=0.21 | m′=0.3 m=0.42 | m′=0.52 m=0.44 | m′=0.54 m=0.12 | m′=0.2 m=0.07 | ||
| prismatic | m′=0.9 m=0.37 | m′=0.38 m=0.2 | m′=0.42 m=0.02 | m′=0.46 m=0.38 | m′=0.35 m=0.03 | m′=0.5 m=0.2 | m′=0.49 m=0.2 | m′=0 m=0.3 | m′=0.87 m=0.3 | m′=0.55 m=0.02 |
| pyramidal-<a> | m′=0.77 m=0.38 | m′=0.51 m=0.14 | m′=0.47 m=0.49 | m′=0.54 m=0.06 | m′=0.58 m=0.38 | m′=0.84 m=0.03 | m′=0.48 m=0.36 | m′=0.58 m=0.05 | ||
| pyramidal-<c+a> | m′=0.38 m=0.09 | m′=0.95 m=0.46 | m′=0.93 m=0.22 | m′=0.8 m=0.31 | m′=0.87 m=0.26 | m′=0.29 m=0.27 | m′=0.29 m=0.27 | m′=0.82 m=0.48 |
Table 2 Calculated geometric alignment factor (m′) and Schmid factors (m) of out coming slip system for possible slip transfer across αp/αp boundaries.
| Possible slip system | 1BAS→2 | 1BAS→10 | 2PRI→16 | 2PRI→17 | 8BAS→7 | 9BAS→10 | 9PYR→10 | 9 BAS→16 | 9PYR→16 | 17PYR→7 |
|---|---|---|---|---|---|---|---|---|---|---|
| basal | m′=0.51 m=0.44 | m′=0.3 m=0.26 | m′=0.14 m=0.32 | m′=0.66 m=0.21 | m′=0.3 m=0.42 | m′=0.52 m=0.44 | m′=0.54 m=0.12 | m′=0.2 m=0.07 | ||
| prismatic | m′=0.9 m=0.37 | m′=0.38 m=0.2 | m′=0.42 m=0.02 | m′=0.46 m=0.38 | m′=0.35 m=0.03 | m′=0.5 m=0.2 | m′=0.49 m=0.2 | m′=0 m=0.3 | m′=0.87 m=0.3 | m′=0.55 m=0.02 |
| pyramidal-<a> | m′=0.77 m=0.38 | m′=0.51 m=0.14 | m′=0.47 m=0.49 | m′=0.54 m=0.06 | m′=0.58 m=0.38 | m′=0.84 m=0.03 | m′=0.48 m=0.36 | m′=0.58 m=0.05 | ||
| pyramidal-<c+a> | m′=0.38 m=0.09 | m′=0.95 m=0.46 | m′=0.93 m=0.22 | m′=0.8 m=0.31 | m′=0.87 m=0.26 | m′=0.29 m=0.27 | m′=0.29 m=0.27 | m′=0.82 m=0.48 |
| Boundary | m{^\prime} | m |
|---|---|---|
| 1BAS→β | 0.40 | 0.48 |
| 2PRI→β | 0.55 | 0.3 |
| 8BAS→β | 0.68 | 0.41 |
Table 3 Calculated geometric alignment factor (m′) and Schmid factors (m) of out coming slip system for possible slip transfer across αp/β boundaries.
| Boundary | m{^\prime} | m |
|---|---|---|
| 1BAS→β | 0.40 | 0.48 |
| 2PRI→β | 0.55 | 0.3 |
| 8BAS→β | 0.68 | 0.41 |
| Mode | Slip systems | Angle between slip direction (κ) | Angle between slip plane normal (ψ) | m' | m |
|---|---|---|---|---|---|
| Straight slip transfer | $(\overline{1} 101)[11 \overline{2} 0] \rightarrow(10 \overline{1})[111]$ $(1 \overline{1} 00)[11 \overline{2} 0] \rightarrow(10 \overline{1})[1 \overline{1} 1]$ $(0002)[\overline{1} 2 \overline{1} 0] \rightarrow(011)[1 \overline{1} 1]$ $(01 \overline{1} 0)[2 \overline{1} \overline{1} 0] \rightarrow(10 \overline{1})[111]$ | 2.454.2811.2210.07 | 0.622.61.030.95 | 0.99 | 0.41 |
| 0.99 | 0.39 | ||||
| 0.98 | 0.5 | ||||
| 0.99 | 0.4 | ||||
| Deflect slip transfer | (1$\bar{1}$00)[11$\bar{2}$0]→(10$\bar{1}$)[1$\bar{1}$1](1$\bar{1}$00)[11$\bar{2}$0]→(011)[1$\bar{1}$1]($\bar{1}$011)[$\bar{1}$2$\bar{1}$0]→(10$\bar{1}$)[1$\bar{1}$1] | 12.268.264.25 | 11.953.512.99 | 0.91 | 0.36 |
| 0.94 | 0.5 | ||||
| 0.95 | 0.45 |
Table 4 The geometric alignment factors (m′) and Schmid factors (m) of out coming slip system for slip transfer across αl/β boundaries.
| Mode | Slip systems | Angle between slip direction (κ) | Angle between slip plane normal (ψ) | m' | m |
|---|---|---|---|---|---|
| Straight slip transfer | $(\overline{1} 101)[11 \overline{2} 0] \rightarrow(10 \overline{1})[111]$ $(1 \overline{1} 00)[11 \overline{2} 0] \rightarrow(10 \overline{1})[1 \overline{1} 1]$ $(0002)[\overline{1} 2 \overline{1} 0] \rightarrow(011)[1 \overline{1} 1]$ $(01 \overline{1} 0)[2 \overline{1} \overline{1} 0] \rightarrow(10 \overline{1})[111]$ | 2.454.2811.2210.07 | 0.622.61.030.95 | 0.99 | 0.41 |
| 0.99 | 0.39 | ||||
| 0.98 | 0.5 | ||||
| 0.99 | 0.4 | ||||
| Deflect slip transfer | (1$\bar{1}$00)[11$\bar{2}$0]→(10$\bar{1}$)[1$\bar{1}$1](1$\bar{1}$00)[11$\bar{2}$0]→(011)[1$\bar{1}$1]($\bar{1}$011)[$\bar{1}$2$\bar{1}$0]→(10$\bar{1}$)[1$\bar{1}$1] | 12.268.264.25 | 11.953.512.99 | 0.91 | 0.36 |
| 0.94 | 0.5 | ||||
| 0.95 | 0.45 |
| Grain | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|
| 1 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.42 |
| <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 | |
| 2 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.37 |
| 3 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.31 |
| 4 | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.48 |
| 5 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.32 |
| <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 | |
| 6 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.42 |
Table A1. The determined slip systems and corresponding Schmid factors in αp grains at the strain of 0.78%.
| Grain | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|
| 1 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.42 |
| <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 | |
| 2 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.37 |
| 3 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.31 |
| 4 | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.48 |
| 5 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.32 |
| <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 | |
| 6 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.42 |
| Grain | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|
| 3 | <c + a>-pyramidal | (0$\bar{1}$11)[$\bar{1}$2$\bar{1}$3] | 0.48 |
| 7 | <c + a>-pyramidal | (11$\bar{2}$2)[$\bar{1}$$\bar{1}$23] | 0.41 |
| <c + a>-pyramidal | (01$\bar{1}$1)[11$\bar{2}$3] | 0.4 | |
| 8 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.48 |
| <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.35 | |
| 9 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 |
| <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.44 | |
| 10 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.44 |
| 11 | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.43 |
| 12 | <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{1}$2$\bar{1}$3] | 0.38 |
| <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{2}$113] | 0.44 | |
| 13 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.43 |
| <c + a>-pyramidal | ($\bar{1}$011)[11$\bar{2}$3] | 0.44 | |
| 14 | <a>-basal | (0002)[11$\bar{2}$0] | 0.37 |
| 15 | <c + a>-pyramidal | ($\bar{1}$101)[2$\bar{1}$$\bar{1}$3] | 0.46 |
| 16 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.27 |
| <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.44 | |
| 17 | <a>-pyramidal | (10$\bar{1}$1)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 18 | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.33 |
Table A2. The determined slip systems and corresponding Schmid factors in αp grains at the strain of 1.94%.
| Grain | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|
| 3 | <c + a>-pyramidal | (0$\bar{1}$11)[$\bar{1}$2$\bar{1}$3] | 0.48 |
| 7 | <c + a>-pyramidal | (11$\bar{2}$2)[$\bar{1}$$\bar{1}$23] | 0.41 |
| <c + a>-pyramidal | (01$\bar{1}$1)[11$\bar{2}$3] | 0.4 | |
| 8 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.48 |
| <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.35 | |
| 9 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.47 |
| <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.44 | |
| 10 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.44 |
| 11 | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.43 |
| 12 | <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{1}$2$\bar{1}$3] | 0.38 |
| <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{2}$113] | 0.44 | |
| 13 | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.43 |
| <c + a>-pyramidal | ($\bar{1}$011)[11$\bar{2}$3] | 0.44 | |
| 14 | <a>-basal | (0002)[11$\bar{2}$0] | 0.37 |
| 15 | <c + a>-pyramidal | ($\bar{1}$101)[2$\bar{1}$$\bar{1}$3] | 0.46 |
| 16 | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.27 |
| <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.44 | |
| 17 | <a>-pyramidal | (10$\bar{1}$1)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 18 | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.33 |
| Grain | Type | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|---|
| 1 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.47 |
| 2 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.49 |
| 3 | S | <a>-basal | (0002)[11$\bar{2}$0] | 0.45 |
| 4 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 5 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 6 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.45 |
| 7 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 |
| 8 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 9 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.45 |
| 10 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.43 |
| 11 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.45 |
| 12 | S | <a>-pyramidal | (10$\bar{1}$1)[$\bar{1}$2$\bar{1}$0] | 0.48 |
Table A3. The determined slip systems and corresponding Schmid factors in αl grains at the strain of 0.78%.
| Grain | Type | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|---|
| 1 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.47 |
| 2 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.49 |
| 3 | S | <a>-basal | (0002)[11$\bar{2}$0] | 0.45 |
| 4 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 5 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 6 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.45 |
| 7 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 |
| 8 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 9 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.45 |
| 10 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.43 |
| 11 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.45 |
| 12 | S | <a>-pyramidal | (10$\bar{1}$1)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| Grain | Type | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|---|
| 6 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.44 |
| 8 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 9 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 13 | S | <c+a>-pyramidal | ($\bar{1}$2$\bar{1}$2)[1$\bar{2}$13] | 0.49 |
| 14 | S | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.46 |
| 15 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 |
| 16 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 17 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.44 |
| 17 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.28 |
| 18 | C | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.43 |
| 19 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 20 | S | <c + a>-pyramidal | ($\bar{1}$101)[1$\bar{2}$13] | 0.49 |
| 21 | S | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.39 |
| 22 | S | <c + a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
| 23 | S | <c + a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
| 24 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.4 |
| 25 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.39 |
| 26 | C | <c+a>-pyramidal | ($\bar{1}$101)[2$\bar{1}$$\bar{1}$3] | 0.39 |
| 27 | C | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 28 | C | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.48 |
| 29 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.34 |
| 30 | C | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.48 |
| 31 | S | <c + a>-pyramidal | ($\bar{1}$101)[1$\bar{2}$13] | 0.47 |
| 32 | S | <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{2}$113] | 0.46 |
| 33 | S | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.45 |
| 34 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.38 |
| 35 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.42 |
| 36 | S | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.37 |
| 37 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 38 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 39 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 40 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 41 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 42 | C | <a>-basal | (0002)[11$\bar{2}$0] | 0.4 |
| 43 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 44 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.43 |
| 45 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 46 | C | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.39 |
| 47 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 48 | S | <c+a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
Table A4. The determined slip systems and corresponding Schmid factors in αl grains at the strain of 1.94%.
| Grain | Type | Active slip system | Slip plane and direction | Schmid factor |
|---|---|---|---|---|
| 6 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.44 |
| 8 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 9 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 13 | S | <c+a>-pyramidal | ($\bar{1}$2$\bar{1}$2)[1$\bar{2}$13] | 0.49 |
| 14 | S | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.46 |
| 15 | C | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.5 |
| 16 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 17 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.44 |
| 17 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.28 |
| 18 | C | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.43 |
| 19 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 20 | S | <c + a>-pyramidal | ($\bar{1}$101)[1$\bar{2}$13] | 0.49 |
| 21 | S | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.39 |
| 22 | S | <c + a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
| 23 | S | <c + a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
| 24 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.4 |
| 25 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.39 |
| 26 | C | <c+a>-pyramidal | ($\bar{1}$101)[2$\bar{1}$$\bar{1}$3] | 0.39 |
| 27 | C | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.49 |
| 28 | C | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.48 |
| 29 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.34 |
| 30 | C | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.48 |
| 31 | S | <c + a>-pyramidal | ($\bar{1}$101)[1$\bar{2}$13] | 0.47 |
| 32 | S | <c + a>-pyramidal | (1$\bar{1}$01)[$\bar{2}$113] | 0.46 |
| 33 | S | <a>-basal | (0002)[2$\bar{1}$$\bar{1}$0] | 0.45 |
| 34 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.38 |
| 35 | S | <a>-basal | (0002)[$\bar{1}$2$\bar{1}$0] | 0.42 |
| 36 | S | <a>-prismatic | (10$\bar{1}$0)[$\bar{1}$2$\bar{1}$0] | 0.37 |
| 37 | S | <a>-pyramidal | ($\bar{1}$101)[11$\bar{2}$0] | 0.45 |
| 38 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 39 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 40 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 41 | S | <a>-pyramidal | ($\bar{1}$011)[$\bar{1}$2$\bar{1}$0] | 0.48 |
| 42 | C | <a>-basal | (0002)[11$\bar{2}$0] | 0.4 |
| 43 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 44 | S | <c + a>-pyramidal | ($\bar{2}$112)[2$\bar{1}$$\bar{1}$3] | 0.43 |
| 45 | S | <a>-pyramidal | (1$\bar{1}$01)[11$\bar{2}$0] | 0.5 |
| 46 | C | <a>-prismatic | (01$\bar{1}$0)[2$\bar{1}$$\bar{1}$0] | 0.39 |
| 47 | S | <a>-prismatic | (1$\bar{1}$00)[11$\bar{2}$0] | 0.44 |
| 48 | S | <c+a>-pyramidal | ($\bar{1}$$\bar{1}$22)[11$\bar{2}$3] | 0.5 |
| [1] | G. Lütjering, J.C. Williams, Titanium, Springer-Verlag, Berlin, 2007 second ed. |
| [2] | C. Leyens, M. Peters, Berlin, 2003. |
| [3] |
P.F. Gao, M.W. Fu, M. Zhan, Z.N. Lei, Y.X. Li. J. Mater. Sci. Technol. 39 (2020) 56-73.
DOI URL |
| [4] |
Z. Zhang, F.P.E. Dunne, J. Mech. Phys. Solids 103 (2017) 199-220.
DOI URL |
| [5] |
P.F. Gao, G. Qin, X.X. Wang, Y.X. Li, M. Zhan, G.J. Li, J.S. Li, Mater. Sci. Eng. A 739 (2019) 203-213.
DOI URL |
| [6] |
Z.N. Lei, P.F. Gao, H.W. Li, X.G. Fan, Y. Cai, M. Zhan, Mater. Charact. 134 (2017) 236-245.
DOI URL |
| [7] |
R. Hosseini, M. Morakabati, S.M. Abbasi, A. Hajari, Mater. Sci. Eng. A 696 (2017) 155-165.
DOI URL |
| [8] |
C.S. Tan, Q.Y. Sun, L. Xiao, Y.Q. Zhao, J. Sun, Mater. Sci. Eng. A 725 (2018) 33-42.
DOI URL |
| [9] |
A.J. Palomares-García, M.T. Pérez-Prado, J.M. Molina-Aldareguia, Acta Mater. 123 (2017) 102-114.
DOI URL |
| [10] | T.R. Bieler, P. Eisenlohr, C. Zhang, H.J. Phukan, M.A. Crimp, Curr. Opin. Solid State Mater.Sci. 18 (2014) 212-226. |
| [11] |
S. Hémery, C. Tromas, P. Villechaise, Materialia 5 (2019) 100189.
DOI URL |
| [12] |
C.S. Tan, X.L. Li, Q.Y. Sun, L. Xiao, Y.Q. Zhao, J. Sun, Int. J. Fatigue 75 (2015) 1-9.
DOI URL |
| [13] |
X. Liu, Y. Qian, Q.B. Fan, Y. Zhou, X.J. Zhu, D.D. Wang. J. Alloys Compd. 826 (2020) 154209.
DOI URL |
| [14] |
S.F. Zhang, W.D. Zeng, Q.Y. Zhao, L.L. Ge, M. Zhang, Mater. Sci. Eng. A 708 (2017) 574-581.
DOI URL |
| [15] |
Q.Y. Zhao, F. Yang, R. Torrens, L. Bolzoni, Mater. Sci. Eng. A 750 (2019) 45-59.
DOI URL |
| [16] |
P.F. Gao, Y.X. Li, R.H. Wu, Z.N. Lei, Y. Cai, M. Zhan, Materials 11 (2018) 2194.
DOI URL |
| [17] |
Z.H. Wu, H.C. Kou, N.N. Chen, Z.X. Zhang, F.M. Qiang, J.K. Fan, B. Tang, J.S. Li, Int. J. Fatigue 141 (2020) 105872.
DOI URL |
| [18] |
M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Acta Mater. 59 (2011) 283-296.
DOI URL |
| [19] |
H. Li, D.E. Mason, Y. Yang, T.R. Bieler, M.A. Crimp, C.J. Boehlert, Philos. Mag. 93 (2013) 2875-2895.
DOI URL |
| [20] |
A.J. Palomares-García, M.T. Pérez-Prado, J.M. Molina-Aldareguia, Mater. Des. 146 (2018) 81-95.
DOI URL |
| [21] |
M. Jiménez, W. Ludwig, D. Gonzalez, J.M. Molina-Aldareguia, Scr. Mater. 162 (2019) 261-265.
DOI URL |
| [22] |
S. Joseph, I. Bantounas, T.C. Lindley, D. Dye, Int. J. Plasticity 100 (2018) 90-103.
DOI URL |
| [23] |
J.R. Seal, M.A. Crimp, T.R. Bieler, C.J. Boehlert, Mater. Sci. Eng. A 552 (2012) 61-68.
DOI URL |
| [24] |
D. Vanderschueren, M. Nobuki, M. Nakamura, Scr. Metall. Et Mater. 28 (1993) 605-610.
DOI URL |
| [25] |
A. Gokhale, R. S., E.W. Huang, S.Y. Lee, R. Prasad, S.S. Singh, J. Jain, Mater. Lett. 246 (2019) 24-27.
DOI |
| [26] |
P.F. Gao, Y. Cai, M. Zhan, X.G. Fan, Z.N. Lei. J. Alloys Compd. 741 (2018) 734-745.
DOI URL |
| [27] |
S. Hémery, P. Nizou, P. Villechaise, Mater. Sci. Eng. A 709 (2018) 277-284.
DOI URL |
| [28] |
T.C. Lee, I.M. Robertson, H.K. Birnbaum, Scr. Metall. 23 (1989) 799-803.
DOI URL |
| [29] |
E. Werner, W. Prantl. J. Appl. Crystallogr. 21 (1988) 311-316.
DOI URL |
| [30] |
Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater. 76 (2014) 1-12.
DOI URL |
| [31] |
C.S. Tan, Q.Y. Sun, L. Xiao, Y.Q. Zhao, J. Sun. J. Alloys Compd. 724 (2017) 112-120.
DOI URL |
| [32] |
L. Wang, X.G. Fan, M. Zhan, X.Q. Jiang, X. Zeng, Y.F. Liang, H.J. Zheng, A.M. Zhao, Mater. Des. 186 (2020) 108338.
DOI URL |
| [33] |
S. Zaefferer, Mater. Sci. Eng. A 344 (2003) 20-30.
DOI URL |
| [34] |
I.J. Beyerlein, C.N. Tomé, Int. J. Plasticity 24 (2008) 867-895.
DOI URL |
| [35] |
P. Kwasniak, H. Garbacz, K.J. Kurzydlowski, Acta Mater 102 (2016) 304-314.
DOI URL |
| [36] |
Z. Liu, Z.B. Zhao, J.R. Liu, L. Wang, G. Yang, S.L. Gong, Q.J. Wang, R. Yang, Mater. Sci. Eng. A 742 (2019) 508-516.
DOI URL |
| [37] |
G. Roberts, R.M. Ward, M. Strangwood, C.L. Davis, Ironmak. Steelmak. 40 (2013) 92-97.
DOI URL |
| [38] |
S.L. Wei, G.M. Zhu, C.C. Tasan, Acta Mater. 206 (2020) 116520.
DOI URL |
| [1] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
| [2] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [3] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
| [4] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
| [5] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
| [6] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
| [7] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
| [8] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
| [9] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
| [10] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
| [11] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
| [12] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
| [13] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
| [14] | Hui Wang, Jiaqiang Liu, Chengtao Wang, Steve Guofang Shen, Xudong Wang, Kaili Lin. The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration [J]. J. Mater. Sci. Technol., 2021, 63(0): 18-26. |
| [15] | Jin-Yu Zhang, Fu-Zhi Dai, Zhi-Peng Sun, Wen-Zheng Zhang. Structures and energetics of semicoherent interfaces of precipitates in hcp/bcc systems: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2021, 67(0): 50-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
