J. Mater. Sci. Technol. ›› 2022, Vol. 98: 177-185.DOI: 10.1016/j.jmst.2021.04.066
• Research Article • Previous Articles Next Articles
Min Chenga, Zhengguan Lub, Jie Wub, Ruipeng Guoa,*(), Junwei Qiaoa, Lei Xub,*(
), Rui Yangb
Received:
2020-12-26
Revised:
2021-03-30
Accepted:
2021-04-25
Published:
2022-01-30
Online:
2022-01-25
Contact:
Ruipeng Guo,Lei Xu
About author:
lxu@imr.ac.cn (L. Xu).Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components[J]. J. Mater. Sci. Technol., 2022, 98: 177-185.
Fig. 3. Micro-CT images of Ti-6Al-4V alloys: (a) 2D slice showing the presence of pores in the as-HIPed state; (b) 2D slice showing the TIP in the heat-treated state.
Fig. 9. SEM images showing the fracture surfaces of heat-treated Ti-6Al-4V powder compacts: (a) crack initiated at surface (σa=575 MPa, Nf=6.87 × 105); (b) crack initiated at surface with facets (σa=550 MPa, Nf=4.46 × 106); (c) crack initiated at subsurface with facets and pores (σa=500 MPa, Nf=2.99 × 106); (e) crack initiated at surface pores (σa=575 MPa, Nf=1.13 × 105); (d, f) high magnification images of (c, e) (symbol with black arrows: facets, symbol with white arrows: pores).
Fig. 10. SEM images showing the VHCF fatigue fracture surfaces of heat-treated Ti-6Al-4V alloys: (a) crack initiated at surface with facets (σa=500 MPa, Nf=3.81 × 105); (b) crack initiated at surface pores (σa=380 MPa, Nf=4.50 × 105); (c) crack initiated at interior with pores and facets: (σa=380 MPa, Nf=4.24 × 108); (d) crack initiated at interior with facets (σa=390 MPa, Nf=1.87 × 108).
Fig. 11. S-N curve showing the effect of pore size and stress concentration (Kt) on the VHCF fatigue life. The color markers denote the pore size measured by SEM observation.
Fig. 12. (a) The defect size versus fatigue life and (b) the ΔKini versus fatigue life of the heat-treated Ti-6Al-4V powder compact in the VHCF regime.
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[2] | R. Yang, Acta Metall. Sin. 51 (2015) 129-147 in Chinese. |
[3] |
R. Guo, L. Xu, B.Y. Zong, R. Yang, Acta Metall. Sin. 30 (2017) 735-744.
DOI URL |
[4] |
F. Cao, K.S. Ravi Chandran, P. Kumar, P. Sun, Z.Z. Fang, M. Koopman, Metall. Mater. Trans. A 47 (2016) 2335-2345.
DOI URL |
[5] |
M. Cheng, B. Yu, R. Guo, X. Shi, L. Xu, J. Qiao, R. Yang. J. Mater. Res. Technol. 10 (2021) 153-163.
DOI URL |
[6] | F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, V.A. Duz, JOM 55 (2004) 81-91. |
[7] | L. Xu, R.P. Guo, J. Wu, Z.G. Lu, R. Yang, Acta Metall. Sin. 54 (2018) 1537-1552 in Chinese. |
[8] |
H. Mughrabi, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 755-764.
DOI URL |
[9] |
A.A. Shanyavskiy, Int. J. Fatigue 28 (2006) 1647-1657.
DOI URL |
[10] |
Z. Huang, H. Liu, H. Wang, D. Wagner, M. Khan, Q. Wang, Int. J. Fatigue 93 (2016) 232-237.
DOI URL |
[11] |
X. Liu, C. Sun, Y. Hong, Mater. Sci. Eng. A 622 (2015) 228-235.
DOI URL |
[12] |
Y. Wu, J. Liu, H. Wang, S. Guan, R. Yang, H. Xiang. J. Mater. Sci. Technol. 34 (2018) 1189-1195.
DOI URL |
[13] |
S. Heinz, D. Eifler, Int. J. Fatigue 93 (2016) 301-308.
DOI URL |
[14] |
W. Li, H. Zhao, A. Nehila, Z. Zhang, T. Sakai, Int. J. Fatigue 104 (2017) 342-354.
DOI URL |
[15] |
Y. Yan, G. Liu, P. Nash, Int. J. Fatigue 55 (2013) 81-91.
DOI URL |
[16] |
F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, K.S.R. Chandran, Mater. Sci. Eng. A 630 (2015) 139-145.
DOI URL |
[17] |
K. Zhang, J. Mei, N. Wain, X. Wu, Metall. Mater. Trans. A 41 (2010) 1033-1045.
DOI URL |
[18] |
R. Guo, L. Xu, Z. Chen, Q. Wang, B.Y. Zong, R. Yang, Mater. Sci. Eng. A 706 (2017) 57-63.
DOI URL |
[19] | R.P. Guo, L. Xu, W.X Cheng, J.F. Lei, R. Yang, Acta Metall. Sin. 52 (2016) 842-850 in Chinese. |
[20] |
C. Cai, B. Song, P. Xue, Q. Wei, C. Yan, Y. Shi, Mater. Des. 106 (2016) 371-379.
DOI URL |
[21] |
R. Guo, B. Yu, X. Shi, L. Xu, R. Yang, JOM 71 (2019) 3614-3620.
DOI URL |
[22] |
Z. Lu, J. Wu, L. Xu, R. Yang, Acta Metall. Sin. 32 (2019) 1329-1336.
DOI URL |
[23] |
R. Gerling, R. Leitgeb, F.P. Schimansky, Mater. Sci. Eng. A 252 (1998) 239-247.
DOI URL |
[24] |
S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Scr. Mater. 122 (2016) 72-76.
DOI URL |
[25] | D. Eylon, S.W. Schwenker, F.H. Froes, Metall.Trans. A16 (1985)1526-1531. |
[26] | L. Xu, R.P. Guo, C.G. Bai, J.F. Lei, R. Yang, Mater. Sci Technol. 30 (2014) 1289-1295. |
[27] |
R. Guo, L. Xu, J. Wu, R. Yang, B.Y. Zong, Mater. Sci. Eng. A 639 (2015) 327-334.
DOI URL |
[28] |
S. Romano, A. Brandão, J. Gumpinger, M. Gschweitl, S. Beretta, Mater. Des. 131 (2017) 32-48.
DOI URL |
[29] |
N. Sanaei, A. Fatemi, Mater. Sci. Eng. A 785 (2020) 139385.
DOI URL |
[30] |
S. Beretta, S. Romano, Int. J. Fatigue 94 (2017) 178-191.
DOI URL |
[31] |
J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Bier- mann, T. Niendorf, Int. J. Fatigue 94 (2017) 236-245.
DOI URL |
[32] |
F. Liu, C. He, Y. Chen, H. Zhang, Q. Wang, Y. Liu, Int. J. Fatigue 140 (2020) 105795.
DOI URL |
[33] |
R. Morrissey, T. Nicholas, Int. J. Fatigue 28 (2006) 1577-1582.
DOI URL |
[34] | Y. Murakami, London, 2002. |
[35] |
S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Sci. Rep. 7 (1) (2017) 7308.
DOI PMID |
[36] | R. Biswal, A.K. Syed, X. Zhang, Addit. Manuf. 23 (2018) 433-442. |
[37] |
Y. Hong, X. Liu, Z. Lei, C. Sun, Int. J. Fatigue 89 (2016) 108-118.
DOI URL |
[38] | R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Hoboken, 2012. |
[39] |
K.S.R. Chandran, S.K. Jha, Acta Mater. 53 (2005) 1867-1881.
DOI URL |
[1] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[2] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[3] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[4] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[5] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[6] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[7] | Jinhu Zhang, Xuexiong Li, Dongsheng Xu, Chunyu Teng, Hao Wang, Liang Yang, Hongtao Ju, Haisheng Xu, Zhichao Meng, Yingjie Ma, Yunzhi Wang, Rui Yang. Phase field simulation of the stress-induced α microstructure in Ti-6Al-4 V alloy and its CPFEM properties evaluation [J]. J. Mater. Sci. Technol., 2021, 90(0): 168-182. |
[8] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[9] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[10] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[11] | Xiaozhao Ma, Zhilei Xiang, Chao Tan, Zhitian Wang, Yingying Liu, Ziyong Chen, Qun Shu. Influences of boron contents on microstructures and mechanical properties of as-casted near α titanium alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 1-18. |
[12] | Qiu-Jie Chen, Shang-Yi Ma, Shao-Qing Wang. The assisting and stabilizing role played by ω phase during the $~\left\{ 112 \right\}{{111}_{\beta }}$ twinning in Ti-Mo alloys: A first-principles insight [J]. J. Mater. Sci. Technol., 2021, 80(0): 163-170. |
[13] | D.L. Gong, H.L. Wang, E.G. Obbard, R. Yang, Y.L. Hao. Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 234-243. |
[14] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[15] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||