J. Mater. Sci. Technol. ›› 2022, Vol. 98: 99-117.DOI: 10.1016/j.jmst.2021.04.059
• Research Article • Previous Articles Next Articles
AmalShaji Karapuzhaa,b,c,*(), Darren Fraserc, Yuman Zhua,b, Xinhua Wua,b, Aijun Huanga,b
Received:
2021-01-31
Revised:
2021-04-26
Accepted:
2021-04-29
Published:
2022-01-30
Online:
2022-01-25
Contact:
AmalShaji Karapuzha
About author:
*E-mail address: amal.shajikarapuzha@monash.edu (A. Shaji Karapuzha).AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 98: 99-117.
Ni | Cr | Fe | Mo | Co | Si | W | Al | C | Mn |
---|---|---|---|---|---|---|---|---|---|
Bal. | 21.0 | 18.6 | 9.2 | 1.6 | 0.47 | 0.74 | 0.2 | < 0.01 | < 0.01 |
Table 1 Chemical composition of the pre-alloyed Hastelloy X powder used in the present study obtained by ICP-OES analysis (wt.%).
Ni | Cr | Fe | Mo | Co | Si | W | Al | C | Mn |
---|---|---|---|---|---|---|---|---|---|
Bal. | 21.0 | 18.6 | 9.2 | 1.6 | 0.47 | 0.74 | 0.2 | < 0.01 | < 0.01 |
Fig. 1. (a) SEM micrograph of pre-alloyed Hastelloy X powder, (b) schematic of scanning strategy used in the present study, (c) layout of horizontal and vertical build specimens on the build plate and (d) representative tensile specimens extracted from the as-built and post-treated blocks and its dimensions.
Fig. 2. (a) Relative density of as-built and post-treated PBF-EB Hastelloy X specimens obtained from µ-CT and OM image analysis, 3D visualization of defect distribution in (b) as-built, (c) SHT and (d) HIP PBF-EB Hastelloy X specimens and representative OM micrographs showing porosity in (e) as-built, (f) SHT and (g) HIP PBF-EB Hastelloy X specimens along the transverse plane.
Fig. 3. Etched OM micrographs of as-built PBF-EB Hastelloy X specimens sectioned along (a) transverse and (b) vertical plane. The scan tracks and melt pools are highlighted by yellow and red dashed lines, respectively. The solid black line corresponds to grain boundaries.
Fig. 4. Representative SEM micrographs of as-built PBF-EB Hastelloy X specimens showing grain structure (a) perpendicular to build direction, (b) parallel to build direction, (c) dendritic microstructure and (d) segregation of precipitates at grain boundaries.
Fig. 5. (a) SEM-BSE image and corresponding EDXS maps showing the presence of Mo-rich carbides along grain boundaries of as-built PBF-EB Hastelloy X, (b) EDXS line scan results obtained across the precipitate marked in (a), (c) EDXS spectrum and spot analysis results (in wt.%) of the γ-matrix (Spot 1) and carbide precipitate (Spot 2) shown in (a).
Fig. 6. (a) Etched optical micrograph showing the dissolution of melt pool boundaries after SHT, (b) high magnification SEM image showing the dissolution of dendritic microstructure after SHT, (c) no significant precipitates in SHT PBF-EB Hastelloy X, (d) segregation of precipitates at grain boundaries in HIPed PBF-EB Hastelloy X specimen.
Fig. 7. (a) EDXS map results showing the presence of Mo-rich carbide precipitates in the grain boundaries of HIP PBF-EB Hastelloy X, (b) EDXS line scan results obtained across the precipitate marked in (a), EDXS spectrum and spot analysis results (in wt.%) of the (c) γ-matrix (Spot 1) and (d) carbide precipitate (Spot 2) shown in (a).
Fig. 8. EBSD IPF maps showing grain morphology of as-built and post-treated PBF-EB Hastelloy X specimens along (a-c) transverse plane and (d-f) vertical plane. The corresponding {100}, {110} and {111} pole figure maps are shown below the IPF maps.
Sample | Number of grains | Mean Diameter (µm) | Mean Aspect Ratio | Min Aspect Ratio | Max Aspect Ratio |
---|---|---|---|---|---|
As-built-Horizontal | 3727 | 28.9 ± 2.7 | 1.9 ± 0.7 | 1.0 | 7.2 |
As-built-Vertical | 734 | 82.0 ± 65.4 | 4.5 ± 0.8 | 1.0 | 31.8 |
SHT-Horizontal | 2490 | 35.7 ± 3.2 | 2.0 ± 0.9 | 1.0 | 12.8 |
SHT-Vertical | 398 | 92.9 ± 76.7 | 5.4 ± 4.5 | 1.0 | 31.4 |
HIP-Horizontal | 1796 | 42.9 ± 10.1 | 2.2 ± 1.1 | 1.0 | 12.3 |
HIP-Vertical | 288 | 129.9 ± 101.5 | 4.7 ± 4.1 | 1.0 | 25.0 |
Table 2 Grain size characteristics of as-built and post-treated PBF-EB Hastelloy X specimens.
Sample | Number of grains | Mean Diameter (µm) | Mean Aspect Ratio | Min Aspect Ratio | Max Aspect Ratio |
---|---|---|---|---|---|
As-built-Horizontal | 3727 | 28.9 ± 2.7 | 1.9 ± 0.7 | 1.0 | 7.2 |
As-built-Vertical | 734 | 82.0 ± 65.4 | 4.5 ± 0.8 | 1.0 | 31.8 |
SHT-Horizontal | 2490 | 35.7 ± 3.2 | 2.0 ± 0.9 | 1.0 | 12.8 |
SHT-Vertical | 398 | 92.9 ± 76.7 | 5.4 ± 4.5 | 1.0 | 31.4 |
HIP-Horizontal | 1796 | 42.9 ± 10.1 | 2.2 ± 1.1 | 1.0 | 12.3 |
HIP-Vertical | 288 | 129.9 ± 101.5 | 4.7 ± 4.1 | 1.0 | 25.0 |
Fig. 9. Room temperature mechanical properties of PBF-EB Hastelloy X as a function of build orientations and post-treatment: (a) representative engineering stress-strain curves, (b) yield strength, (c) ultimate tensile stress, (d) elongation to failure, (e) Vickers microhardness. The dashed line corresponds to the room temperature tensile properties of as-cast Hastelloy X obtained from Ref. [48].
Fig. 10. Fracture surfaces of horizontal build room temperature PBF-EB Hastelloy X tensile specimens loaded perpendicular to build direction: (a) as-built, (b) SHT, (c) HIP condition. The high magnification SEM micrographs for corresponding post-fabrication treatments are shown in the inset. Few of the micro-pores are highlighted using red arrows.
Fig. 11. Fracture surfaces of vertically build room temperature PBF-EB Hastelloy X tensile specimens loaded parallel to build direction: (a) as-built, (b) SHT, (c) HIP condition. The high magnification SEM micrographs for corresponding conditions are shown in the inset. Few of the micro-pores are highlighted using red arrows.
Fig. 12. Grain structure of PBF-EB Hastelloy X as a function of post-fabrication treatments along transverse and vertical plane: (a, b), (e, f) and (i, j) grain size distribution; (c, d), (g, h) and (k, l) aspect ratio distribution.
Fig. 13. IAMA maps showing recrystallized, substructured and deformed grains in PBF-EB Hastelloy X as a function of post-fabrication thermal treatments along the transverse and vertical planes. The corresponding volume fraction of each type of grains is shown below the IAMA maps.
Fig. 14. (a) True tensile stress-strain curves, (b) instantaneous work hardening rate (θ) curves, (c) log σ vs log ε curves indicating work hardening exponents (n) for as-built, SHT and HIPed PBF-EB Hastelloy X specimens along horizontal and vertical directions. The inset figure in (b) shows the different stages of work hardening within PBF-EB Hastelloy X specimens.
Specimen | K1 (MPa) | n1 | K2 (MPa) | n2 |
---|---|---|---|---|
As-built-Horizontal | 705 ± 15 | 0.12 ± 0.005 | 1301 ± 11 | 0.33 ± 0.006 |
As-built-Vertical | 594 ± 27 | 0.12 ± 0.006 | 1226 ± 54 | 0.39 ± 0.019 |
SHT-Horizontal | 581 ± 31 | 0.12 ± 0.003 | 1523 ± 31 | 0.47 ± 0.022 |
SHT-Vertical | 582 ± 10 | 0.12 ± 0.002 | 1239 ± 10 | 0.41 ± 0.006 |
HIP-Horizontal | 554 ± 10 | 0.12 ± 0.003 | 1526 ± 36 | 0.48 ± 0.013 |
HIP-Vertical | 546 ± 9 | 0.12 ± 0.004 | 1273 ± 34 | 0.42 ± 0.014 |
Table 3 Parameters of Hollomon relation derived from tensile tests.
Specimen | K1 (MPa) | n1 | K2 (MPa) | n2 |
---|---|---|---|---|
As-built-Horizontal | 705 ± 15 | 0.12 ± 0.005 | 1301 ± 11 | 0.33 ± 0.006 |
As-built-Vertical | 594 ± 27 | 0.12 ± 0.006 | 1226 ± 54 | 0.39 ± 0.019 |
SHT-Horizontal | 581 ± 31 | 0.12 ± 0.003 | 1523 ± 31 | 0.47 ± 0.022 |
SHT-Vertical | 582 ± 10 | 0.12 ± 0.002 | 1239 ± 10 | 0.41 ± 0.006 |
HIP-Horizontal | 554 ± 10 | 0.12 ± 0.003 | 1526 ± 36 | 0.48 ± 0.013 |
HIP-Vertical | 546 ± 9 | 0.12 ± 0.004 | 1273 ± 34 | 0.42 ± 0.014 |
Cr | Fe | Mo | Co | Si | W | Al | Mn |
---|---|---|---|---|---|---|---|
337 | 153 | 1015 | 39.4 | 275 | 977 | 225 | 448 |
Table 4 Values of ki (MPa At. Fraction-0.5) for determining solid solution strengthening.
Cr | Fe | Mo | Co | Si | W | Al | Mn |
---|---|---|---|---|---|---|---|
337 | 153 | 1015 | 39.4 | 275 | 977 | 225 | 448 |
Loading Direction | As-built | SHT | HIP |
---|---|---|---|
Parallel to Transverse Plane | 106 ± 23 MPa | 95 ± 21 MPa | 87 ± 19 MPa |
Parallel to Vertical Plane | 63 ± 14 MPa | 59 ± 13 MPa | 50 ± 11 MPa |
Table 5 Estimated contribution of grain boundary strengthening towards the yield strength of as-built, SHT and HIPed PBF-EB Hastelloy X.
Loading Direction | As-built | SHT | HIP |
---|---|---|---|
Parallel to Transverse Plane | 106 ± 23 MPa | 95 ± 21 MPa | 87 ± 19 MPa |
Parallel to Vertical Plane | 63 ± 14 MPa | 59 ± 13 MPa | 50 ± 11 MPa |
Loading Direction | As-built | SHT | HIP |
---|---|---|---|
Parallel to Transverse Plane | 197 ± 45 MPa | 121 ± 23 MPa | 129 ± 27 MPa |
Parallel to Vertical Plane | 140 ± 32 MPa | 84 ± 16 MPa | 95 ± 20 MPa |
Table 6 Estimated contribution of dislocation strengthening towards the yield strength of as-built, SHT and HIPed PBF-EB Hastelloy X.
Loading Direction | As-built | SHT | HIP |
---|---|---|---|
Parallel to Transverse Plane | 197 ± 45 MPa | 121 ± 23 MPa | 129 ± 27 MPa |
Parallel to Vertical Plane | 140 ± 32 MPa | 84 ± 16 MPa | 95 ± 20 MPa |
[1] |
Y. Zhong, L.-.E. Rännar, S. Wikman, A. Koptyug, L. Liu, D. Cui, Z. Shen, Fusion Eng. Des. 116 (2017) 24-33.
DOI URL |
[2] | P.A. Kobryn, N.R. Ontko, L.P. Perkins, J.S. Tiley, in: Proceedings to Cost Effective Manufacture via Net Shape Processing -RTO-MP-AVT-139 Specialist Meeting, Amsterdam, Netherlands, May 15-19, 2006, pp. 1-14. |
[3] | J.C. Najmon, S. Raeisi, Amsterdam, 2019, pp. 7-31. |
[4] | L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Int. J. Biomater. 2012 (2012) 1-14. |
[5] |
S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria. J. Orthop. Res. 34 (2016) 369-385.
DOI URL |
[6] |
D. Cooper, J. Thornby, N. Blundell, R. Henrys, M.A. Williams, G. Gibbons, Mater. Des. 69 (2015) 44-55.
DOI URL |
[7] | V. Juechter, M.M. Franke, T. Merenda, A. Stich, C. Körner, R.F. Singer, Addit. Manuf. 22 (2018) 118-126. |
[8] | X. Hastelloy, Haynes International, 1997. |
[9] |
Q. Han, R. Mertens, M.L. Montero-Sistiaga, S. Yang, R. Setchi, K. Vanmeensel, B. Van Hooreweder, S.L. Evans, H. Fan, Mater. Sci. Eng. A 732 (2018) 228-239.
DOI URL |
[10] |
H.M. Tawancy. J. Mater. Sci. 18 (1983) 2976-2986.
DOI URL |
[11] | R.C. Reed, The Superalloys, Cambridge University Press, Cambridge, 2006. |
[12] |
N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater 94 (2015) 59-68.
DOI URL |
[13] | Y. Tian, D. Tomus, P. Rometsch, X. Wu, Addit. Manuf. 13 (2017) 103-112. |
[14] |
G. Marchese, G. Basile, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, S. Biamino, Materials (Basel) 11 (2018) 106.
DOI URL |
[15] |
M.L. Montero-Sistiaga, S. Pourbabak, J. VanHumbeeck, D. Schryvers, K. Van-meensel, Mater. Des. 165 (2019) 107598.
DOI URL |
[16] |
F. Wang, Int. J. Adv. Manuf. Technol. 58 (2012) 545-551.
DOI URL |
[17] | V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, R. Singh, in: Additive Man- ufacturing Handbook: Prodction Development For the Defense Industry, CRC Press, Florida, 2017, pp. 251-262. |
[18] | F.I. Azam, A.M. Abdul Rani, K. Altaf, T.V.V.L.N. Rao, H.A. Zaharin, in: IOP Con- ference Series: Material Science and Engineering -3rd International Confer- ence on Mechanical, Manufacturing and Process Plant Engineering, Batu Fer- ringhi, Penang, Malaysia, November 22-23, 2017. |
[19] |
P.K. Gokuldoss, S. Kolla, J. Eckert, Materials (Basel) 10 (2017) 672.
DOI URL |
[20] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61 (2016) 315-360.
DOI URL |
[21] | M.C. Kuner, M. Romedenne, P. Fernandez-Zelaia, S. Dryepondt, Addit. Manuf. 36 (2020) 101431. |
[22] |
M. Romedenne, R. Pillai, M. Kirka, S. Dryepondt, Corros. Sci. 171 (2020) 108647.
DOI URL |
[23] | S. Dryepondt, M.M. Kirka, F.A. List III, in: Corrosion 2019 - NACE International Corrosion Conference Series, Nashville, Tennessee, U.S.A., March24-28, 2019. |
[24] |
M.M. Attallah, R. Jennings, X. Wang, L.N. Carter, MRS Bull 41 (2016) 758-764.
DOI URL |
[25] | S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Din- widdie, M.K. Kirka, A. Plotkowski, Y. Lee, R.R. Dehoff, Metall. Mater. Trans. A 49A (2018) 3764-3780. |
[26] |
S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G.E. Seward, N. Zhou, S.A.J. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, T.M. Pollock, Nat. Commun. 11 (2020) 4975.
DOI PMID |
[27] | E. Chauvet , P. Kontis , E.A. Jägle , B. Gault, D. Raabe, C. Tassin, J.-.J. Blandin, R. Dendievel, B. Vayre, S. Abed, G. Martin, ActaMater, 142 (2018)82-94. |
[28] |
D. Tomus, T. Jarvis, X. Wu, J. Mei, P. Rometsch, E. Herny, J.-.F. Rideau, S. Vail-lant, Phys. Procedia 41 (2013) 823-827.
DOI URL |
[29] |
K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Mater 60 (2012) 2229-2239.
DOI URL |
[30] |
L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. MacHado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Metall. Mater. Trans. A 42 (2011) 3491-3508.
DOI URL |
[31] |
E. Chlebus, K. Gruber, B. Ku ′znicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639 (2015) 647-655.
DOI URL |
[32] |
D. Zhang, W. Niu, X. Cao, Z. Liu, Mater. Sci. Eng. A 644 (2015) 32-40.
DOI URL |
[33] |
D. Tomus, Y. Tian, P.A. Rometsch, M. Heilmaier, X. Wu, Mater. Sci. Eng. A 667 (2016) 42-53.
DOI URL |
[34] |
G. Marchese, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, S. Biamino, Materials (Basel) 12 (2019) 486.
DOI URL |
[35] |
S. Özbilen, Powder Metall 42 (1999) 70-78.
DOI URL |
[36] | V.V. Popov, A. Katz-Demyanetz, A. Garkun, M. Bamberger, Addit. Manuf. 22 (2018) 834-843. |
[37] |
X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, A. Chiba, Mater. Sci. Eng. A 680 (2017) 239-248.
DOI URL |
[38] |
S.M.J. Razavi, A. Avanzini, G. Cornacchia, L. Giorleo, F. Berto, Int. J. Fatigue 142 (2021) 105926.
DOI URL |
[39] | ASTM, ASTM E8/E8M-16a - standard test methods for tension testing of metallic materials, 2020. |
[40] |
M. Iebba, A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, C. Pirozzi, R. Borrelli, S. Franchitti, A. Squillace. J. Mater. Eng. Perform. 26 (2017) 4138-4147.
DOI URL |
[41] | W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, K.P. Hoyer, Ad- dit. Manuf. 13 (2017) 93-102. |
[42] |
R. Fadida, A. Shirizly, D. Rittel. J. Appl. Mech. 85 (2018) 041004.
DOI URL |
[43] | L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Med-ina, R.B. Wicker, D.H. Abbott, ActaMater 61 (2013)4289-4296. |
[44] |
H. Peng, Y. Shi, S. Gong, H. Guo, B. Chen, Mater. Des. 159 (2018) 155-169.
DOI URL |
[45] |
R. Salehi, A. Samadi, M.K. Savadkoohi, Metallogr. Microstruct. Anal. 1 (2012) 290-296.
DOI URL |
[46] |
J.C. Zhao, M. Larsen, V. Ravikumar, Mater. Sci. Eng. A 293 (2000) 112-119.
DOI URL |
[47] | ASTM International, ASTM E112-13 standard test methods for determining av- erage grain size, 2013. |
[48] | Heat and Corrosion Resistant Castings: Their Engineering Properties and Ap- plications, International Nickel Company, 1978. |
[49] |
A. Strondl, M. Palm, J. Gnauk, G. Frommeyer, Mater. Sci. Technol. 27 (2011) 876-883.
DOI URL |
[50] |
D. Deng, J. Moverare, R.L. Peng, H. Söderberg, Mater. Sci. Eng. A 693 (2017) 151-163.
DOI URL |
[51] |
A. Shaji Karapuzha, D. Fraser, D. Schliephake, S. Dietrich, Y. Zhu, X. Wu, A. Huang. J. Alloy. Compd. 862 (2021) 158034.
DOI URL |
[52] |
I.S. Kim, B.G. Choi, J.E. Jung, J. Do, C.Y. Jo, Mater. Charact. 106 (2015) 375-381.
DOI URL |
[53] |
B.A. Thiele, F. Schubert, H. Derz, G. Pott. J. Nucl. Mater. 171 (1990) 94-102.
DOI URL |
[54] |
A. Kreitcberg, V. Brailovski, S. Turenne, Mater. Sci. Eng. A 689 (2017) 1-10.
DOI URL |
[55] |
D. Deng, R.L. Peng, H. Brodin, J. Moverare, Mater. Sci. Eng. A 713 (2018) 294-306.
DOI URL |
[56] | L.R. Carney, J.J. Mecholsky, Mater. Sci. Appl. 4 (2013) 258-267. |
[57] |
H. Gong, K. Rafi, H. Gu, G.D. JanakiRam, T. Starr, B. Stucker, Mater. Des. 86 (2015) 545-554.
DOI URL |
[58] | M.G. Ardakani, N.D. Souza, A. Wagner, B.A. Shollock, M. McLean, in: Superal- loys 20 0 0 - Proceedings of the Ninth International Symposium on Superal- loys, Seven Springs, PA, U.S.A, September 17-21, 2000. |
[59] |
L.L. Parimi, G.A. Ravi, D. Clark, M.M. Attallah, Mater. Charact. 89 (2014) 102-111.
DOI URL |
[60] | M. Segersäll, J.J. Moverare, K. Simonsson, S. Johansson, in: Superalloys 2012, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012, pp. 215-223. |
[61] |
M. Segersäll, J. Moverare, Materials (Basel), 6 (2013) 437-444.
DOI URL |
[62] |
H. Helmer, A. Bauereiß, R.F. Singer, C. Körner, Mater. Sci. Eng. A 668 (2016) 180-187.
DOI URL |
[63] |
Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 71-85.
DOI URL |
[64] |
V.P. Sabelkin, G.R. Cobb, T.E. Shelton, M.N. Hartsfield, D.J. Newell, R.P. O’Hara, R.A. Kemnitz, Mater. Des. 182 (2019) 108095.
DOI URL |
[65] | L.E. Murr, Addit. Manuf. 5 (2015) 40-53. |
[66] | Y. Zhong, Stockholm University, 2017. |
[67] |
G. Bai, J. Li, R. Hu, T. Zhang, H. Kou, H. Fu, Mater. Sci. Eng. A 528 (2011) 2339-2344.
DOI URL |
[68] |
B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Scr. Mater. 141 (2017) 45-49.
DOI URL |
[69] |
V. Borovikov, M.I. Mendelev, A.H. King, R. Lesar, Model. Simul. Mater. Sci. Eng. 23 (2015) 055003.
DOI URL |
[70] |
W. Püschl, Prog. Mater. Sci. 47 (2002) 415-461.
DOI URL |
[71] |
P. Behjati, S. Asgari, Mater. Sci. Technol. 27 (2011) 1858-1862.
DOI URL |
[72] | R. Esmaeilizadeh, A. Keshavarzkermani, U. Ali, B. Behravesh, A. Bonakdar, H. Jahed, E. Toyserkani, Addit. Manuf. 38 (2021) 101805. |
[73] | W.F. Hosford, Fundamentals of Engineering Plasticity, Cambridge University Press, Cambridge, 2013. |
[74] |
J. Xu, H. Gruber, R. Boyd, S. Jiang, R.L. Peng, J.J. Moverare, Materialia 10 (2020) 100657.
DOI URL |
[75] |
E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30 (1999) 1223-1233.
DOI URL |
[76] | W.D. Callister Jr, D.G. Rethwisch, R.D. Doherty, Fundamentals of Materials Science and En- gineering: An Integrated Approach, John Wiley & Sons, New York, 2020. |
[77] | H. Hollomon, AIME Trans 12 (1945) 1-22. |
[78] | W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, New York, 2005. |
[79] | G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1961. |
[80] |
N. Tian, F. Yuan, C. Duan, K. Liu, G. Wang, G. Zhao, L. Zuo, Materials (Basel) 12 (2019) 2368.
DOI URL |
[81] | W.B. Morrison, ASM Trans. Quart. 59 (1966) 824-846. |
[82] |
Z. Fan, H. Mingzhi, S. Deke, Mater. Sci. Eng. A 122 (1989) 211-213.
DOI URL |
[83] |
M. Vinoth Kumar, V. Balasubramanian, A. Gourav Rao. J. Mater. Res. Technol. 6 (2017) 116-122.
DOI URL |
[84] |
J. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, H. Henein, Metall. Mater. Trans. A 43 (2012) 3043-3061.
DOI URL |
[85] |
C.P. Massey, S.N. Dryepondt, P.D. Edmondson, K.A. Terrani, S.J. Zinkle. J. Nucl. Mater. 512 (2018) 227-238.
DOI URL |
[86] |
Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bour- geois, X. Wu, Acta Mater 171 (2019) 108-118.
DOI URL |
[87] |
H.A. Roth, C.L. Davis, R.C. Thomson, Metall. Mater. Trans. A 28 (1997) 1329-1335.
DOI URL |
[88] |
R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Metall. Mater. Trans. A 40 (2009) 1588-1603.
DOI URL |
[89] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[90] |
R. Esmaeilizadeh, A. Keshavarzkermani, U. Ali, Y. Mahmoodkhani, B. Behravesh, H. Jahed, A. Bonakdar, E. Toyserkani. J. Alloy. Compd. 812 (2020) 152097.
DOI URL |
[91] |
A.A.W. Thompson, Acta Metall 23 (1975) 1337-1342.
DOI URL |
[92] | S. Takaki, Mater. Sci.Forum 706- 709 (2012) 181-185. |
[93] |
B. Mintz, Met. Technol. 11 (1984) 265-272.
DOI URL |
[94] |
S. Zhang, X. Lin, L. Wang, X. Yu, Y. Hu, H. Yang, L. Lei, W. Huang, Mater. Sci. Eng. A 812 (2021) 141145.
DOI URL |
[95] |
D. Dong, C. Chang, H. Wang, X. Yan, W. Ma, M. Liu, S. Deng, J. Gardan, R. Bolot, H. Liao. J. Mater. Sci. Technol. 73 (2021) 151-164.
DOI URL |
[96] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater 118 (2016) 152-163.
DOI URL |
[97] |
S. Jiang, J. Shen, T. Nagasaka, T. Muroga, A. Sagara, S. Ohnuki, K. Hokamoto, S. Tanaka, D. Inao, Y. Morizono, R. Kasada, P. Zheng. J. Nucl. Mater. 539 (2020) 152322.
DOI URL |
[98] |
K. Zhang, B. Holmedal, T. Mánik, A. Saai, Int. J. Plast. 114 (2019) 144-160.
DOI URL |
[99] | S.Y. Liu, H.Q. Li, C.X. Qin, R. Zong, X.Y. Fang, Mater. Des. 191 (2020) 108642. |
[100] |
C. Li, R. White, X.Y. Fang, M. Weaver, Y.B. Guo, Mater. Sci. Eng. A 705 (2017) 20-31.
DOI URL |
[1] | Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review [J]. J. Mater. Sci. Technol., 2022, 99(0): 193-206. |
[2] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[3] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[4] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[5] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[6] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[7] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[8] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[9] | Zihong Wang, Xin Lin, Nan Kang, Jing Chen, Hua Tan, Zhe Feng, Zehao Qin, Haiou Yang, Weidong Huang. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior [J]. J. Mater. Sci. Technol., 2021, 95(0): 40-56. |
[10] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[11] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[12] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[13] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
[14] | Xinchang Zhang, Tan Pan, Yitao Chen, Lan Li, Yunlu Zhang, Frank Liou. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 80(0): 100-116. |
[15] | S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, H.L. An. Effect of post-bond heat treatment on the microstructure and high temperature mechanical property of a TLP bonded γ′-strengthened co-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 244-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||