J. Mater. Sci. Technol. ›› 2022, Vol. 98: 87-98.DOI: 10.1016/j.jmst.2021.03.087
• Research Article • Previous Articles Next Articles
Bijin Zhoua,b,c, Leyun Wanga,f,*(), Jinhui Wangd, Alireza Maldara, Gaoming Zhua, Hailong Jiae, Peipeng Jind, Xiaoqin Zenga,f,*(
), Yanjun Lic,**(
)
Received:
2020-11-25
Revised:
2021-03-13
Accepted:
2021-03-20
Published:
2022-01-30
Online:
2022-01-25
Contact:
Leyun Wang,Xiaoqin Zeng,Yanjun Li
About author:
**E-mail addresses: yanjun.li@ntnu.no (Y. Li).Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation[J]. J. Mater. Sci. Technol., 2022, 98: 87-98.
Fig. 1. Identification for the activated slip systems by slip trace and lattice rotation analysis. (a) Inverse pole figure (IPF) map of Grain A and its neighboring grains. (b) SEM image showing two kinds of surface slip traces in Grain A. (c) 30 simulated slip traces of Grain A. (d){0002}pole figure of Grain A. The (0002) pole was stretched along two directions: the streak from 1 to 2 is caused by the basal <a> dislocation slip; the streak from 1 to 3 is caused by the pyramidal I <c + a> dislocation slip.
Fig. 2. (a) IPF map of the region of interest before deformation. (b) Pole figures corresponding to (a). (c) True stress-true strain curve of the in-situ tensile test, during which the SEM/EBSD imaging was conducted at 0% (S0), 1.6% (S1), 4.4% (S2), 6.8% (S3, SEM only), 8.8% (S4), and 12.8% (S5) strains. (d) Work hardening curve corresponding to the true strain-true stress curve presented in (c). The monotonic decrease of the work hardening response was interrupted during the in-situ test.
Strain | Slip modes (inside grains/near GBs) |
---|---|
Pris. <a> Pyra. <a> Pyra. I <c + a> Pyra. II <c + a> Total | |
1.6% | 52/14 9/21 1/8 3/11 65/54 |
4.4% | 77/27 26/27 6/11 8/16 117/81 |
6.8% | 92/32 29/32 7/11 13/17 141/92 |
8.8% | 93/33 31/33 7/11 14/17 145/94 |
12.8% | 97/33 33/33 8/14 17/17 155/97 |
Table 1 Slip activity (inside grains and near GBs) for the Mg-5Y sample at various strains.
Strain | Slip modes (inside grains/near GBs) |
---|---|
Pris. <a> Pyra. <a> Pyra. I <c + a> Pyra. II <c + a> Total | |
1.6% | 52/14 9/21 1/8 3/11 65/54 |
4.4% | 77/27 26/27 6/11 8/16 117/81 |
6.8% | 92/32 29/32 7/11 13/17 141/92 |
8.8% | 93/33 31/33 7/11 14/17 145/94 |
12.8% | 97/33 33/33 8/14 17/17 155/97 |
Fig. 5. Proportion of grains showing the non-basal dislocation slip traces at different strains for the Mg-5Y alloy. (a) Slip traces inside grains and (b) slip traces near GBs.
Fig. 6. Schmid factors of the activated non-basal dislocation slip (SFobserved) in comparison to the maximum SFs (SFmax) of the corresponding non-basal slip modes at four strains (in the four rows). The left column presents the observed slip within the grains. The right column presents the observed slip within the grains near GBs, showing that most of the slip near GBs do not follow the Schmid law.
Fig. 8. Comparison of the simulated true stress-strain curve (the dashed line) by the VPSC simulation and the one (the solid line) by the in-situ tensile test shows very close agreement.
Fundamental CRSSs | Adjustable parameters | |||||||
---|---|---|---|---|---|---|---|---|
Basal <a> | Pris. <a> | Pyra. I <a> | Pyra. I <c + a> | Pyra. II <c + a> | τc | τ1s | θ0s | θ1s |
2 | 41 | 51 | 72 | 62 | 8 | 15 | 240 | 48 |
Table 2 Material parameters of the Mg-5Y alloy used in the VPSC modeling (MPa).
Fundamental CRSSs | Adjustable parameters | |||||||
---|---|---|---|---|---|---|---|---|
Basal <a> | Pris. <a> | Pyra. I <a> | Pyra. I <c + a> | Pyra. II <c + a> | τc | τ1s | θ0s | θ1s |
2 | 41 | 51 | 72 | 62 | 8 | 15 | 240 | 48 |
Fig. 9. Comparison of the simulated (the left two columns) and the measured (the right two columns) texture for the Mg-Y alloy at (a) 1.6%, (b) 4.4%, (c) 8.8%, and (d) 12.8% strains.
Fig. 10. Simulated relative activity plot for the five slip modes of the Mg-Y alloy as a function of the applied strain according to the VPSC simulation.
Fig. 11. Bright-field image for the <c + a> dislocation cross-slip near GB in the Mg-5Y alloy with a 4% strain, under the g = 0002 diffraction condition near the [11$\bar{2}$0] zone axis. The dislocation segment marked with the blue arrow could be ascribed to the <c + a> dislocation slipped on the pyramidal II plane. The dislocation marked with the red arrow deviates from the [10$\bar{1}$0] by ~60°, suggesting cross-slip occurred (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 12. Dark-field image for the <c + a> dislocation cross-slip near GB in the extruded Mg-0.47Ca (wt.%) alloy with an 8% tensile strain, under the g = 0002 diffraction condition near the [11$\bar{2}$0] zone axis.
[1] |
U.M. Chaudry, K. Hamad, J. Kim. J. Alloy. Compd. 792 (2019) 652-664.
DOI |
[2] |
B.C. Suh, M.S. Shim, K.S. Shin, N.J. Kim, Scr. Mater. 84-85 (2014) 1-6.
DOI URL |
[3] |
Z. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, N. Birbilis, Int. Mater. Rev. 64 (2019) 27-62.
DOI URL |
[4] |
S S Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater. 59 (2011) 429-439.
DOI URL |
[5] |
N. Stanford, R. Cottam, B. Davis, J. Robson, Acta Mater. 78 (2014) 1-13.
DOI URL |
[6] |
D. Zhang, H. Wen, M.A. Kumar, F. Chen, L. Zhang, I.J. Beyerlein, J.M. Schoenung, S. Mahajan, E.J. Lavernia, Acta Mater. 120 (2016) 75-85.
DOI URL |
[7] |
K. Takemoto, H. Rikihisa, M. Tsushida, H. Kitahara, S. Ando, Mater. Trans. 61 (2020) 935-940.
DOI URL |
[8] |
L. Tang, W. Liu, Z. Ding, D. Zhang, Y. Zhao, E.J. Lavernia, Y. Zhu, Comput. Mater. Sci. 115 (2016) 85-91.
DOI URL |
[9] |
L.J. Long, G.H. Huang, D.D. Yin, B. Ji, H. Zhou, Q.D. Wang, Metall. Mater. Trans. A 51 (2020) 2738-2751.
DOI URL |
[10] |
J. Hirsch, T. Al-Samman, Acta Mater. 61 (2013) 818-843.
DOI URL |
[11] |
R. Ahmad, Z. Wu, W.A. Curtin, Acta Mater. 183 (2020) 228-241.
DOI URL |
[12] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359 (2018) 447-451. |
[13] |
K.H. Kim, J.B. Jeon, N.J. Kim, B.J. Lee, Scr. Mater. 108 (2015) 104-108.
DOI URL |
[14] |
Z.X. Wu, W.A. Curtin, Nature 526 (2015) 62-67.
DOI URL |
[15] |
B. Yin, Z. Wu, W.A. Curtin, Acta Mater. 136 (2017) 249-261.
DOI URL |
[16] |
L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.S. Park, P. Kenesei, E. Lilleodden, X. Zeng, Acta Mater. 155 (2018) 138-152.
DOI URL |
[17] |
B. Zhou, L. Wang, W. Liu, J. Wang, X. Zeng, W. Ding, Mater. Charact. 156 (2019) 109873.
DOI URL |
[18] |
R. Ahmad, B. Yin, Z. Wu, W.A. Curtin, Acta Mater. 172 (2019) 161-184.
DOI URL |
[19] |
Z. Ding, W. Liu, H. Sun, S. Li, D. Zhang, Y. Zhao, E.J. Lavernia, Y. Zhu, Acta Mater. 146 (2018) 265-272.
DOI URL |
[20] |
Z. Wu, W. Curtin, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 11137-11142.
DOI URL |
[21] |
R. Ahmad, Z. Wu, S. Groh, W.A. Curtin, Scr. Mater. 155 (2018) 114-118.
DOI URL |
[22] |
Z. Huang, L. Wang, B. Zhou, T. Fischer, S. Yi, X. Zeng, Scr. Mater. 143 (2018) 44-48.
DOI URL |
[23] |
A. Kula, X. Jia, R.K. Mishra, M. Niewczas, Int. J. Plast. 92 (2017) 96-121.
DOI URL |
[24] |
B. Zhou, L. Wang, P. Jin, H. Jia, H.J. Roven, X. Zeng, Y. Li, Int. J. Plast. 128 (2020) 102669.
DOI URL |
[25] |
X. Xu, D. Lunt, R. Thomas, R.P. Babu, A. Harte, M. Atkinson, J.Q. daFonseca, M. Preuss, Acta Mater. 175 (2019) 376-393.
DOI |
[26] |
T.R. Bieler, R. Alizadeh, M. Peña-Ortega, J. Llorca, Int. J. Plast. 118 (2019) 269-290.
DOI URL |
[27] |
C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, M.T. Pérez-Prado, Acta Mater. 60 (2012) 1889-1904.
DOI URL |
[28] | B. Zhou, L. Wang, W. Liu, X. Zeng, Y. Li, Metall. Mater. Trans. A 51 (2020) 4 414-4 421. |
[29] |
B. Hutchinson, J. Jain, M.R. Barnett, Acta Mater. 60 (2012) 5391-5398.
DOI URL |
[30] |
Q. Chen, L. Hu, L. Shi, T. Zhou, M. Yang, J. Tu, Mater. Sci. Eng. A 774 (2020) 138912.
DOI URL |
[31] |
C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, A. Atrens. J. Mater. Sci. Technol. 35 (2019) 142-150.
DOI URL |
[32] |
T. Nakata, J.J. Bhattacharyya, S.R. Agnew, S. Kamado, Scr. Mater. 169 (2019) 70-75.
DOI URL |
[33] |
K.-H. Kim, K. Okayasu, H. Fukutomi, Mater. Trans. 56 (2015) 17-22.
DOI URL |
[34] |
M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic, Acta Mater. 131 (2017) 221-232.
DOI URL |
[35] |
M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7 (2016) 11068.
DOI PMID |
[36] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120 (2019) 164-179.
DOI URL |
[37] |
J. Koike, R. Ohyama, Acta Mater. 53 (2005) 1963-1972.
DOI URL |
[38] |
J. Yang, Z.M. Song, L.M. Lei, G.P. Zhang, Mater. Sci. Eng. A 617 (2014) 84-88.
DOI URL |
[39] |
H. Conrad, W. Robertson, JOM 9 (1957) 503-512.
DOI URL |
[40] | R. Labusch, Phys. Status Solidi B 41 (1970) 659-669. |
[41] |
A. Tehranchi, B. Yin, W.A. Curtin, Acta Mater. 151 (2018) 56-66.
DOI URL |
[42] |
R.E. Reed-Hill, W.D. Robertson, JOM 9 (1957) 496-502.
DOI URL |
[43] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Hi-gashi, Acta Mater. 51 (2003) 2055-2065.
DOI URL |
[1] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[2] | Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84(0): 27-42. |
[3] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[4] | Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35(9): 1917-1924. |
[5] | Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications [J]. J. Mater. Sci. Technol., 2019, 35(7): 1211-1217. |
[6] | Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C [J]. J. Mater. Sci. Technol., 2019, 35(7): 1270-1277. |
[7] | Quanzhao Yue, Lin Liu, Wenchao Yang, Chuang He, Dejian Sun, Taiwen Huang, Jun Zhang, Hengzhi Fu. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 752-763. |
[8] | Le Chang, Chang-Yu Zhou, Hong-Xi Liu, Jian Li, Xiao-Hua He. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J]. J. Mater. Sci. Technol., 2018, 34(5): 864-877. |
[9] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2507-2514. |
[10] | Duohui Li, Xinyu Shu, Deli Kong, Hao Zhou, Yanhui Chen. Revealing the atomistic deformation mechanisms of face-centered cubic nanocrystalline metals with atomic-scale mechanical microscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 2027-2034. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||