J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (12): 2507-2514.DOI: 10.1016/j.jmst.2018.04.004
Special Issue: Titanium Alloys 2018
• Orginal Article • Previous Articles Next Articles
Q. Xueab, Y.J. Maa, J.F. Leia, R. Yanga*(), C. Wangb*(
)
Received:
2017-11-09
Revised:
2018-01-01
Accepted:
2018-03-26
Online:
2018-12-20
Published:
2018-11-15
Contact:
Yang R.,Wang C.
Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability[J]. J. Mater. Sci. Technol., 2018, 34(12): 2507-2514.
Al | Mo | V | Fe | O | N | H | Ti |
---|---|---|---|---|---|---|---|
2.92 | 5.00 | 4.47 | 0.034 | 0.090 | 0.007 | 0.005 | Bal. |
Table 1 Chemical compositions of Ti-3Al-5Mo-4.5 V alloy (wt.%).
Al | Mo | V | Fe | O | N | H | Ti |
---|---|---|---|---|---|---|---|
2.92 | 5.00 | 4.47 | 0.034 | 0.090 | 0.007 | 0.005 | Bal. |
Fig. 1. Ambient temperature tensile true strain/true stress curves (solid black lines) with different heat treatment schemes: (a) ST700, (b) ST750, (c) ST800 and (d) ST880. Corresponding strain-hardening rate profiles, dσ/dε, are plotted in red dots, respectively. Work hardening rates are divided into three stages during the deformation process. Region I: work hardening rate decreases (a, b, c and d) in the elastic and plastic transition regimes. Region II: work hardening rate increases (b, c and d) or stay constant (a). Region III: work hardening rate keeps decreasing from maximum value to 0 (b, c and d).
Heat Treatments | Volume fraction of primary α phase | YS (MPa) | UTS (MPa) | Elongation at UTS (%) |
---|---|---|---|---|
ST700 | 51.6% | 673 | 773 | 6.8 |
ST750 | 38.8% | 463 | 807 | 8.1 |
ST800 | 22.7% | 343 | 843 | 11.0 |
ST880 | 0 | 607 | 910 | 14.8 |
Table 2 Volume fraction of primary α phase and mechanical properties (YS, UTS and elongation at UTS) of Ti-3Al-5Mo-4.5 V alloy with different heat treatment schemes.
Heat Treatments | Volume fraction of primary α phase | YS (MPa) | UTS (MPa) | Elongation at UTS (%) |
---|---|---|---|---|
ST700 | 51.6% | 673 | 773 | 6.8 |
ST750 | 38.8% | 463 | 807 | 8.1 |
ST800 | 22.7% | 343 | 843 | 11.0 |
ST880 | 0 | 607 | 910 | 14.8 |
Fig. 2. Typical SEM images for samples after tensile deformation: (a) ST700 exhibits thin and river-like lines; (b) ST750 shows parallel thin lines; (c) the intersecting laths with different orientation in β matrix of ST750; (d) the thick and parallel laths formed after plastic deformation in ST750; (e) the thick laths in β matrix of ST800 indicated by white arrows.
Fig. 3. TEM analysis of ST700 and ST750 samples after tensile deformation: (a) BF image of dislocations in ST700; (b, c) BF and DF images of SIM in ST750; (d) SAED pattern along the [1-1-1]β zone axis taken from the region of Fig. 3(c); (e) morphology of {332} <113> β twins and SIM α” in ST750; (f) DF image of {332} <113> β twins in ST750(where T indicates Twinning); (g) DF image of SIM α” in ST750; (h) SAED patterns of [-110]β∥[-110]βT and [-110]β∥[-12-3] α” zone axis in ST750.
Fig. 4. {112} <111> β twins in ST750 sample after tensile deformation: (a) BF and (b) DF images of nano-sized {112} <111> β twins (where T indicates twinning); (c) SAED pattern along [-110]β zone axis showing both twin and matrix lattices.
Fig. 5. TEM observations of ST800 sample after tensile deformation: (a) BF image of SIM and athermal α” martensite; (b) DF image of SIM α”1; (c) DF image of athermal martensite α”2; (d) SAED pattern of β[1-1-1]∥α”1[001] and β[1-1-1]∥α”2[-101] zone axis.
Samples | Elements(wt.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Mo | V | [Mo]eq. | |||
ST700 | 82.63 | 2.04 | 8.73 | 6.66 | 13.19 | 2.3787 | 2.7896 |
ST750 | 84.08 | 2.15 | 7.70 | 6.26 | 11.89 | 2.3824 | 2.7875 |
ST800 | 86.55 | 2.44 | 6.21 | 5.20 | 9.69 | 2.3923 | 2.7830 |
ST880 | 88.42 | 2.86 | 4.90 | 4.28 | 7.77 | - | - |
Table 3 The chemical composition and [Mo]eq. of transformed β in the Ti-3Al-5Mo-4.5 V alloy obtained by quantitative EPMA analysis[21].
Samples | Elements(wt.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Mo | V | [Mo]eq. | |||
ST700 | 82.63 | 2.04 | 8.73 | 6.66 | 13.19 | 2.3787 | 2.7896 |
ST750 | 84.08 | 2.15 | 7.70 | 6.26 | 11.89 | 2.3824 | 2.7875 |
ST800 | 86.55 | 2.44 | 6.21 | 5.20 | 9.69 | 2.3923 | 2.7830 |
ST880 | 88.42 | 2.86 | 4.90 | 4.28 | 7.77 | - | - |
Fig. 6. The primary deformation mechanisms of β phase in Ti-3Al-5Mo-4.5 V alloy as a function of β phase stability [Mo]eq.. Point 1, 2, 3 and 4 represent ST880, ST800, ST750 and ST700, respectively.
|
[1] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[2] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[3] | Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature [J]. J. Mater. Sci. Technol., 2019, 35(9): 1917-1924. |
[4] | Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications [J]. J. Mater. Sci. Technol., 2019, 35(7): 1211-1217. |
[5] | Meiqiong Ou, Yingche Ma, Weiwei Xing, Xianchao Hao, Bo Chen, Leilei Ding, Kui Liu. Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C [J]. J. Mater. Sci. Technol., 2019, 35(7): 1270-1277. |
[6] | Le Chang, Chang-Yu Zhou, Hong-Xi Liu, Jian Li, Xiao-Hua He. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J]. J. Mater. Sci. Technol., 2018, 34(5): 864-877. |
[7] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2325-2330. |
[8] | Duohui Li, Xinyu Shu, Deli Kong, Hao Zhou, Yanhui Chen. Revealing the atomistic deformation mechanisms of face-centered cubic nanocrystalline metals with atomic-scale mechanical microscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(11): 2027-2034. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||