J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (12): 2325-2330.DOI: 10.1016/j.jmst.2018.04.002
Special Issue: Titanium Alloys 2018
• Orginal Article • Previous Articles Next Articles
Q. Xueab, Y.J. Mab*(), J.F. Leib, R. Yangb, C. Wanga*(
)
Received:
2017-11-02
Revised:
2018-01-01
Accepted:
2018-03-26
Online:
2018-12-20
Published:
2018-11-15
Contact:
Ma Y.J.,Wang C.
Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability[J]. J. Mater. Sci. Technol., 2018, 34(12): 2325-2330.
elements | Al | Mo | V | Fe | O | N | H |
---|---|---|---|---|---|---|---|
wt.% | 2.92 | 5.00 | 4.47 | 0.034 | 0.090 | 0.0070 | 0.0050 |
Table 1 Chemical analysis of Ti-3Al-5Mo-4.5V (wt.%).
elements | Al | Mo | V | Fe | O | N | H |
---|---|---|---|---|---|---|---|
wt.% | 2.92 | 5.00 | 4.47 | 0.034 | 0.090 | 0.0070 | 0.0050 |
Fig. 1. SEM micrographs of Ti-3Al-5Mo-4.5V alloy solution treated at different temperatures: (a) ST700, (b) ST750, (c) ST800 and (d) ST880, respectively.
Fig. 3. TEM analysis of (a) bright field (BF) image and SAED pattern (inset) of ST700, (b) SAED pattern (inset) and corresponding dark field image of ω phase in ST750, (c) SAED pattern and corresponding dark field image of ω phase in ST800. All diffraction patterns were taken with the beam direction parallel to [110]β. (d) schematic diagram illustrating β and ω spots in ST750 and ST800, respectively.
Fig. 4. TEM images of ST800: (a) bright field image; (b) SAED pattern along [110]β phase zone axis; (c) corresponding dark-field image of athermal martensite taken from the circled spot in (b); (d) indexed diagram corresponding to β phase, ω phase and α″ phase.
Fig. 5. Detailed TEM analysis of ST800: (a) SAED pattern along [111]β zone axis; (b) dark field image taken from the circled spot in (a) showing the athermal martensite; (c) SAED pattern along [100]β zone axis; (d) dark-field image of athermal martensite taken from [100]β zone axis in ST800.
Heat treatment Schemes | Phase composition | Volume fraction of prior α phase |
---|---|---|
ST700 | α + β | 51.6% |
ST750 | α + β + ω | 38.8% |
ST800 | α + β + ω + α″ | 22.7% |
ST880 | α″ | 0 |
Table 2 Phase composition and volume fraction of prior α phase of Ti-3Al-5Mo-4.5V alloy with different heat treatment schemes.
Heat treatment Schemes | Phase composition | Volume fraction of prior α phase |
---|---|---|
ST700 | α + β | 51.6% |
ST750 | α + β + ω | 38.8% |
ST800 | α + β + ω + α″ | 22.7% |
ST880 | α″ | 0 |
Fig. 6. Element distributions of Ti-3Al-5Mo-4.5V alloy by EPMA with quenching temperature 700 °C (ST700), 750 °C (ST750), 800 °C (ST800) and 880 °C (ST880). All figures have the same bar.
Samples | Elements (wt.%) | ||||
---|---|---|---|---|---|
Ti | Al | Mo | V | [Mo]eq. | |
ST700 | 82.629 | 2.043 | 8.727 | 6.659 | 13.19 |
ST750 | 84.082 | 2.145 | 7.701 | 6.260 | 11.89 |
ST800 | 86.548 | 2.439 | 6.205 | 5.202 | 9.69 |
ST880 | 88.417 | 2.857 | 4.904 | 4.281 | 7.77 |
Table 3 The chemical composition and Mo equivalent of transformed β phase in the alloy (wt.%, average five measurements) obtained by quantitative EPMA analysis.
Samples | Elements (wt.%) | ||||
---|---|---|---|---|---|
Ti | Al | Mo | V | [Mo]eq. | |
ST700 | 82.629 | 2.043 | 8.727 | 6.659 | 13.19 |
ST750 | 84.082 | 2.145 | 7.701 | 6.260 | 11.89 |
ST800 | 86.548 | 2.439 | 6.205 | 5.202 | 9.69 |
ST880 | 88.417 | 2.857 | 4.904 | 4.281 | 7.77 |
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[3] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[6] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[7] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[8] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[9] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[10] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[13] | Cheng Gu, Colin D. Ridgeway, Emre Cinkilic, Yan Lu, Alan A. Luo. Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model [J]. J. Mater. Sci. Technol., 2020, 49(0): 91-105. |
[14] | Xuchen Yin, Jianrong Liu, Qingjiang Wang, Lei Wang. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48(0): 36-43. |
[15] | Jixin Yang, Yiqiang Chen, Yongjiang Huang, Zhiliang Ning, Baokun Liu, Chao Guo, Jianfei Sun. Hierarchical microstructure of a titanium alloy fabricated by electron beam selective melting [J]. J. Mater. Sci. Technol., 2020, 42(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||