J. Mater. Sci. Technol. ›› 2021, Vol. 60: 8-20.DOI: 10.1016/j.jmst.2020.04.053
• Research Article • Previous Articles Next Articles
Quan-xin Shia, Cui-ju Wanga, Kun-kun Denga,b,*(), Kai-bo Niea,b, Yucheng Wua,b, Wei-min Ganc,**(
), Wei Lianga,b
Received:
2020-03-27
Revised:
2020-04-16
Accepted:
2020-04-19
Published:
2021-01-10
Online:
2021-01-25
Contact:
Kun-kun Deng,Wei-min Gan
Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone[J]. J. Mater. Sci. Technol., 2021, 60: 8-20.
Fig. 6. SiCp/Mg-5Zn composites: (a) tensile engineering stress-strain curves; (b) true stress-strain curves; (c) Hc values; (d) work hardening rate (θ) and (e) the plot of θ(σ-σ0.2) vs. (σ-σ0.2).
Fig. 7. The neutron diffraction peaks of (10 $\bar 1$ 0)Mg and (10 $\bar 1$ 1)Mg of SiCp/Mg-5Zn composites: (a, b, c) dPDZ = 15 μm; (d, e, f) dPDZ = 30 μm; (g, h, i) dPDZ = 60 μm.
Fig. 9. Work hardening exponent of SiCp/Mg-5Zn composites: (a) lg(σ)-lg(ε) curves by true stress and true strain and (b) work hardening exponent values.
Fig. 10. The evolution of FWHM against tensile load for SiCp/Mg-5Zn composites: (a) (10 $\bar 1$ 0) plane, (c) (10 $\bar 1$ 1) plane and (e) (11 $\bar 2$ 0) plane and the enlarged figures of (b) (10 $\bar 1$ 0) plane, (d) (10 $\bar 1$ 1) plane and (f) (11 $\bar 2$ 0) plane.
Fig. 12. In-situ tensile curves of SiCp/Mg-5Zn composites: (a) dPDZ = 30 μm; (d) dPDZ = 60 μm; (b, e) high magnification and (c, f) variation of ΔPi against εri.
[1] | J.F. Nie, Metall. Mater. Trans. A 43 (2011) 3891-3939. |
[2] | B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han, Int. J. Fatigue 120 (2019) 46-55. |
[3] | X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Mater. Des. 57(2014) 638-645. |
[4] | A. Luo, Metall. Mater. Trans. A 26 (1995) 2445-2455. |
[5] | W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, W. Liang, J. Alloys Compd. 695(2017) 2215-2223. |
[6] | K.K. Deng, X.J. Wang, Y.W. Wu, X.S. Hu, K. Wu, W.M. Gan, Mater. Sci. Eng. A 543 (2012) 158-163. |
[7] | K.B. Nie, X.J. Wang, X.S. Hu, L. Xu, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 528 (2015) 5278-5282. |
[8] | X.J. Wang, X.S. Hu, K.B. Nie, K. Wu, M.Y. Zheng, Trans. Nonferrous Met. Soc. China 22 (2012) 1912-1917. |
[9] | R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. Mcnelley, H.J. Mcqueen, A.D. Rollett, Mater. Sci. Eng. A 238 (1997) 219-274. |
[10] | X.J. Wang, X.S. Hu, K.B. Nie, K.K. Deng, K. Wu, M.Y. Zheng, Mater. Sci. Eng. A 545 (2012) 38-43. |
[11] | Y. Wu, E.J. Lavernia, Scr. Metall. Mater. 27(1992) 173-178. |
[12] | X.F. Sun, C.J. Wang, K.K. Deng, J.W. Kang, Y. Bai, K.B. Nie, S.J. Shang, J. Alloys Compd. 727(2017) 1263-1272. |
[13] | Q.X. Shi, C.J. Wang, K.K. Deng, K.B. Nie, M. Cao, W.M. Gan, W. Liang, Mater. Sci. Eng . A 772 (2020), 138827. |
[14] |
Q.B. Nguyen, M. Gupta, Compos. Sci. Technol. 68(2008) 2185-2192.
DOI URL |
[15] |
X.J. Wang, X.S. Hu, W.Q. Liu, J.F. Du, K. Wu, Y.D. Huang, M.Y. Zheng, Mater. Sci. Eng. A 682 (2017) 491-500.
DOI URL |
[16] | H. Chang, X.J. Wang, X.S. Hu, Y.Q. Wang, K.B. Nie, K. Wu, Rare Met. Mater. Eng. 43(2014) 1821-1825. |
[17] | X. Zhang, K.K. Deng, W.J. Li, H.X. Wang, K.B. Nie, F.J. Xu, W. Liang, Mater. Sci. Eng. A 647 (2015) 15-27. |
[18] | C.L. Mendis, K. Hono, Fundament. Magnes. Alloys Metall. (2013) 125-151. |
[19] | F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, F.S. Pan, Mater. Sci. Eng. A 636 (2015) 516-521. |
[20] | X.F. Sun, C.J. Wang, K.K. Deng, K.B. Nie, X.C. Zhang, X.Y. Xiao, J. Alloys Compd. 732(2018) 328-335. |
[21] | F.J. Humphreys, P.N. Kalu, Acta Metall. Mater. 38(1990) 917-930. |
[22] | L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 569 (2013) 48-53. |
[23] | K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.C. Wu, K.B. Nie, K. Wu, Compos. Part A: Appl. Sci. Manuf. 43(2012) 1280-1284. |
[24] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44(2020) 171-190.
DOI URL |
[25] | W.J. Li, K.K. Deng, X. Zhang, K.B. Nie, F.J. Xu, Mater. Sci. Eng. A 677 (2016) 367-375. |
[26] | J.F. Nie, Scr. Mater. 48(2003) 1009-1015. |
[27] | U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48(2003) 171-273. |
[28] | T. Ungár, M. Zehetbauer, Scr. Mater. 35(1996) 1467-1473. |
[29] | Y.M. Wang, E. Ma, Acta Mater. 52(2004) 1699-1709. |
[30] |
Y.G. Ko, D.H. Shin, K.T. Park, C.S. Lee, Scr. Mater. 54(2010) 1785-1789.
DOI URL |
[31] |
L. Zhang, K.K. Deng, K.B. Nie, F.J. Xu, K. Su, W. Liang, Mater. Sci. Eng. A 636 (2015) 279-288.
DOI URL |
[32] |
J.A. del Valle, F. ˜Carreno, O.A. Ruano, Acta. Mater. 54(2006) 4247-4259.
DOI URL |
[33] | Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, J.J. He, J. Zhao, G.S. Huang, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 730 (2018) 303-316. |
[34] | M. Huang, C. Xu, G. Fan, E. Maawad, W. Gan, L. Geng, F. Lin, G. Tang, H. Wu, Y. Du, Acta Mater. 153(2018) 235-249. |
[35] | Y. Zou, J. Li, H. Wang, K. An, M. Zhang, D. Chen, Z. Zhang, J. Alloys Compd. 685(2016) 331-336. |
[36] | H. Wang, P.D. Wu, C.N. Tomé, J. Wang, Int. J. Solids Struct. 49(2012) 2155-2167. |
[37] |
N. Al-Hamdany, H.G. Brokmeier, W.M. Gan, Mater. Sci. Eng. A 711 (2018) 149-155.
DOI URL |
[38] | Q.X. Shi, K.K. Deng, K.B. Nie, W.G. Zhang, M. Cao, W. Liang, J. Mater. Eng. Perform. 29(2020) 1356-1365. |
[39] |
K. Chen, J. Tang, F. Jiang, J. Teng, D. Fu, H. Zhang, J. Alloys Compd. 792(2019) 1112-1121.
DOI URL |
[40] |
T.T. Liu, F.S. Pan, X.Y. Zhang, Mater. Des. 43(2013) 572-577.
DOI URL |
[41] | Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 576 (2013) 6-13. |
[42] | H. Yan, R.S. Chen, E.H. Han, Mater. Sci. Eng. A 527 (2010) 3317-3322. |
[43] | S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman, Y. Zhou, Mater. Sci. Eng. A 527 (2010) 2951-2961. |
[44] | S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys Compd. 658(2016) 854-861. |
[45] |
C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, A. Atrens, J. Mater. Sci. Technol. 35(2019) 142-150.
DOI URL |
[46] | D.D. Zhang, D.P. Zhang, F.Q. Bu, et al., J. Alloys Compd 728 (2017) 404-412. |
[47] |
R.I. Barabash, G.E. Ice, N. Tamura, J. Appl. Phys. 93(2003) 5701-5706.
DOI URL |
[48] |
X.H. Chen, F.S. Pan, J.J. Mao, J.F. Wang, D.F. Zhang, A.T. Tang, P. Jian, Mater. Des. 32(2011) 1526-1530.
DOI URL |
[49] |
L. Zhang, K.K. Deng, Mater. Sci. Eng. A 725 (2018) 510-521.
DOI URL |
[50] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Kidlington, 1995, pp. 219-224. |
[1] | Gang Chen, Klaus-Dieter Liss, Chao Chen, Yuehui He, Xuanhui Qu, Peng Cao. Porous FeAl alloys via powder sintering: Phase transformation, microstructure and aqueous corrosion behavior [J]. J. Mater. Sci. Technol., 2021, 86(0): 64-69. |
[2] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[3] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[4] | X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54(0): 58-68. |
[5] | Yu Zhou, Qunbo Fan, Xin Liu, Duoduo Wang, Xinjie Zhu, Kai Chen. Multi-scale crystal plasticity finite element simulations of the microstructural evolution and formation mechanism of adiabatic shear bands in dual-phase Ti20C alloy under complex dynamic loading [J]. J. Mater. Sci. Technol., 2020, 59(0): 138-148. |
[6] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
[7] | Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation [J]. J. Mater. Sci. Technol., 2019, 35(10): 2221-2226. |
[8] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[9] | Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5 V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34(12): 2507-2514. |
[10] | Yufang LI, Jianting GUO, Hengqiang YE. Zirconium-Induced Softening in Hyperstoichiometric Ni3Al [J]. J Mater Sci Technol, 2005, 21(02): 207-210. |
[11] | Guozheng KANG, Qianhua KAN, Juan ZHANG. Experimental Study on the Uniaxial Cyclic Deformation of 25CDV4.11 Steel [J]. J Mater Sci Technol, 2005, 21(01): 5-9. |
[12] | Haitao ZHOU, Liufa LIU, Qudong WANG, Da LU, Xiaoqin ZENG, Wenjiang DING. Strain Softening and Hardening Behavior in AZ61 Magnesium Alloy [J]. J Mater Sci Technol, 2004, 20(06): 691-693. |
[13] | HE Jianhong TANG Xiangyun Department of Materials Science and Engineering Huazhong University of Science and Technology Wuhan,430074,China.Department of Materials Science and Engineering Qinghua University,Beijing,100084,China.. Influence of Hydrogen on Dislocation Structure in a Duplex Stainless Steel [J]. J Mater Sci Technol, 1990, 6(3): 173-176. |
[14] | XIA Sike;MA Ruzhang;CAO Guohui;LI Zhengwen;FENG Yongrong University of Science and Technology, Beijing, China. To whom correspondence should be addressed.. The Mssbauer Effect of Y-Ba-Cu-Fe-O Superconductive Oxide [J]. J Mater Sci Technol, 1989, 5(6): 434-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||