J. Mater. Sci. Technol. ›› 2020, Vol. 52: 72-82.DOI: 10.1016/j.jmst.2020.04.013
• Research Article • Previous Articles Next Articles
Kui Wanga,b, Jingfeng Wanga, Xiaoxu Doua, Yuanding Huangb, Norbert Hortb, Sarkis Gavrasb, Shijie Liua, Yanwu Caia, Jinxing Wanga(), Fusheng Pana
Received:
2019-11-19
Revised:
2020-01-17
Accepted:
2020-01-17
Published:
2020-09-15
Online:
2020-09-18
Contact:
Jinxing Wang
Kui Wang, Jingfeng Wang, Xiaoxu Dou, Yuanding Huang, Norbert Hort, Sarkis Gavras, Shijie Liu, Yanwu Cai, Jinxing Wang, Fusheng Pan. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting[J]. J. Mater. Sci. Technol., 2020, 52: 72-82.
Designation | Heat treatment process |
---|---|
As-cast | Semi-continuous casting |
T4 | at 350 °C for 5 h + at 500 °C for 8 h + at 525 °C for 6 h |
T6 | T4 + at 200 °C for 60 h |
Table 1 Heat treatments of the large-scale alloy ingot.
Designation | Heat treatment process |
---|---|
As-cast | Semi-continuous casting |
T4 | at 350 °C for 5 h + at 500 °C for 8 h + at 525 °C for 6 h |
T6 | T4 + at 200 °C for 60 h |
Analyzed locations | Content (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Mg | Gd | Y | Zn | Mn | Fe | Cu | Ni | |
Center | Bal. | 8.83 | 4.09 | 1.32 | 0.82 | 0.0093 | 0.018 | 0.0015 |
1/2 radius | Bal. | 8.41 | 4.26 | 1.35 | 0.84 | 0.0092 | 0.015 | 0.0007 |
Edge | Bal. | 8.86 | 4.09 | 1.32 | 0.82 | 0.0089 | 0.017 | 0.0011 |
Table 2 Actual chemical compositions of the as-cast samples at different locations.
Analyzed locations | Content (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Mg | Gd | Y | Zn | Mn | Fe | Cu | Ni | |
Center | Bal. | 8.83 | 4.09 | 1.32 | 0.82 | 0.0093 | 0.018 | 0.0015 |
1/2 radius | Bal. | 8.41 | 4.26 | 1.35 | 0.84 | 0.0092 | 0.015 | 0.0007 |
Edge | Bal. | 8.86 | 4.09 | 1.32 | 0.82 | 0.0089 | 0.017 | 0.0011 |
Fig. 4. Optical microstructures of the as-cast samples at different locations: (a) schematic illustration of the observed locations: center (b, e), 1/2 radius (c, f) and edge (d, g).
Fig. 5. SEM-BSE micrographs of the as-cast samples at different locations: center (a, d), 1/2 radius (b, e) and edge (c, f). Note, the arrows indicate regions with high concentrations of solute in solid solution.
Fig. 6. Microstructure of the as-cast samples: (a) Local magni?ed area of Fig. 4(b); representative EDS spectrum collected from the Mg3RE-type (b), Mg5RE-type (c) and LPSO phase (d), respectively.
Fig. 7. EBSD analysis of the as-cast sample near the edge: (a) IPF map, (b) local misorientation map, (c) band contrast map with highlighted twin boundaries; (d) the 0001, $\text{ }\!\!\{\!\!\text{ 11}\bar{2}\text{0 }\!\!\}\!\!\text{ }$ and $\text{ }\!\!\{\!\!\text{ 10}\bar{1}\text{0 }\!\!\}\!\!\text{ }$ pole ?gures.
Fig. 11. Optical microstructures of the T4 samples at different locations: (a, d) center; (b, e) 1/2 radius; (c, f) edge. Note, the red and yellow arrows indicate lamellar LPSO and block-shape LPSO phases, respectively.
Fig. 12. SEM-BSE images of the T4 samples at different positions: (a, d) center; (b, e) 1/2 radius; (c, f) edge. Note, the red and yellow arrows indicate the lamellar and block-shape LPSO phase, respectively.
Analyzed locations | Thermal Condition | Tensile mechanical properties | ||
---|---|---|---|---|
UTS (MPa) | TYS (MPa) | EL (%) | ||
Center | As-cast | 179 ± 2 | 141 ± 4 | 2.2 ± 0.2 |
T4 | 189 ± 2 | 175 ± 2 | 1.7 ± 0.2 | |
T6 | 213 ± 5 | 184 ± 2 | 1.3 ± 0.2 | |
1/2 radius | As-cast | 155 ± 7 | 136 ± 2 | 1.3 ± 0.2 |
T4 | 208 ± 2 | 185 ± 2 | 1.9 ± 0.2 | |
T6 | 234 ± 5 | 188 ± 7 | 1.5 ± 0.2 | |
Edge | As-cast | 210 ± 2 | 164 ± 3 | 3.8 ± 0.2 |
T4 | 240 ± 2 | 194 ± 3 | 2.9 ± 0.2 | |
T6 | 268 ± 3 | 214 ± 4 | 1.8 ± 0.2 |
Table 3 Ambient tensile properties of samples at different locations in different thermal conditions.
Analyzed locations | Thermal Condition | Tensile mechanical properties | ||
---|---|---|---|---|
UTS (MPa) | TYS (MPa) | EL (%) | ||
Center | As-cast | 179 ± 2 | 141 ± 4 | 2.2 ± 0.2 |
T4 | 189 ± 2 | 175 ± 2 | 1.7 ± 0.2 | |
T6 | 213 ± 5 | 184 ± 2 | 1.3 ± 0.2 | |
1/2 radius | As-cast | 155 ± 7 | 136 ± 2 | 1.3 ± 0.2 |
T4 | 208 ± 2 | 185 ± 2 | 1.9 ± 0.2 | |
T6 | 234 ± 5 | 188 ± 7 | 1.5 ± 0.2 | |
Edge | As-cast | 210 ± 2 | 164 ± 3 | 3.8 ± 0.2 |
T4 | 240 ± 2 | 194 ± 3 | 2.9 ± 0.2 | |
T6 | 268 ± 3 | 214 ± 4 | 1.8 ± 0.2 |
Fig. 15. TEM BF images and corresponding SAED patterns of the peak-aged alloy: (a, b) block-shape LPSO and β' phases; (c, d) lamellar γ' and β' phases.
[1] |
S.N. Qian, C. Dong, T.Y. Liu, Y. Qin, Q. Wang, Y.J. Wu, L.D. Gu, J.X. Zou, X.W. Heng, L.M. Peng, X.Q. Zeng, J. Mater. Sci. Technol., 34(2018), pp. 1132-1141.
DOI URL |
[2] |
H.R. Jafari Nodooshan, G. Wu, W. Liu, G. Wei, Y. Li, S. Zhang, Mater. Sci. Eng. A, 651(2016), pp. 840-847.
DOI URL |
[3] |
H. Zhou, H.Y. Ning, X.L. Ma, D.D. Yin, L.R. Xiao, X.C. Sha, Y.D. Yu, Q.D. Wang, Y.S. Li, J. Mater. Sci. Technol., 34(2018), pp. 1067-1075.
DOI URL |
[4] |
M. Bugnet, A. Kula, M. Niewczas, G.A. Botton, Acta Mater., 79(2014), pp. 66-73.
DOI URL |
[5] |
H. Yang, Y. Huang, B. Song, K.U. Kainer, H. Dieringa, Mater. Sci. Eng. A, 755(2019), pp. 18-27.
DOI URL |
[6] |
J. Wang, P. Song, S. Huang, F. Pan, Mater. Lett., 93(2013), pp. 415-418.
DOI URL |
[7] |
S. Huang, J. Wang, F. Hou, X. Huang, F. Pan, Mater. Sci. Eng. A, 612 (2014), pp. 363-370.
DOI URL |
[8] |
K. Wang, J. Wang, X. Peng, S. Gao, H. Hu, L. Zeng, F. Pan, Mater. Sci. Eng. A, 748(2019), pp. 100-107.
DOI URL |
[9] |
S. Liu, K. Wang, J. Wang, S. Huang, S. Gao, X. Peng, H. Hu, F. Pan, Mater. Sci. Eng. A, 758(2019), pp. 96-98.
DOI URL |
[10] |
K. Wang, J. Wang, S. Huang, S. Gao, S. Guo, S. Liu, X. Chen, F. Pan, Mater. Sci. Eng. A, 733(2018), pp. 267-275.
DOI URL |
[11] | X. Heng, Y. Zhang, W. Rong, Y. Wu, L. Peng, Mater. Des., 169 (2019). |
[12] |
C. Xu, M.Y. Zheng, Y.Q. Chi, X.J. Chen, K. Wu, E.D. Wang, G.H. Fan, P. Yang, G.J. Wang, X.Y. Lv, S.W. Xu, S. Kamado, Mater. Sci. Eng. A, 549(2012), pp. 128-135.
DOI URL |
[13] |
X. liu, Q. Le,Z. Zhang, L. Bao, Z. Fan, J. Cui, J. Magnes. Alloy., 2(2014), pp. 342-348.
DOI URL |
[14] | X. Yang, Z. Xinming, J. Hao, C. Buxiang, J. Cent.South Univ., 38(2007), pp. 24-29. |
[15] |
F. Pan, X. Chen, T. Yan, T. Liu, J. Mao, W. Luo, Q. Wang, J. Peng, A. Tang, B. Jiang, J. Magnes. Alloy., 4(2016), pp. 8-14.
DOI URL |
[16] |
H. Cao, M. Huang, C. Wang, S. Long, J. Zha, G. You, J. Magnes. Alloy., 7(2019), pp. 370-380.
DOI URL |
[17] |
A. Prasad, P.J. Uggowitzer, Z. Shi, A. Atrens, Adv. Eng. Mater., 14(2012), pp. 477-490.
DOI URL |
[18] |
Z. Yu, Y. Huang, X. Qiu, G. Wang, F. Meng, N. Hort, J. Meng, Mater. Sci. Eng. A, 622(2015), pp. 121-130.
DOI URL |
[19] | Q. Dong, Z. Luo, H. Zhu, L.Y. Wang, T. Ying, Z.H. Jin, D.J. Li, W.J. Ding, X.Q. Zeng, J. Mater. Sci. Technol., 34(2018), pp. 1773-1780. |
[20] |
J. Wang, K. Wang, F. Hou, S. Liu, X. Peng, J. Wang, F. Pan, Mater. Sci. Eng. A, 728(2018), pp. 10-19.
DOI URL |
[21] |
J. Grbner, A. Kozlov, X.-Y. Fang, S. Zhu, J.-F. Nie, M.A. Gibson, R. Schmid-Fetzer, Acta Mater., 90(2015), pp. 400-416.
DOI URL |
[22] | D.J. Chen, K. Zhang, T. Lib, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J.W. Yuan, Mater. Sci. Eng. A, 744(2019), p. 9. |
[23] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater., 58(2010), pp. 2936-2947.
DOI URL |
[24] |
J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, F.H. Wang, J. Mater. Sci. Technol., 35(2019), pp. 1644-1654.
DOI URL |
[25] |
Y. Du, Y. Wu, L. Peng, J. Chen, X. Zeng, W. Ding, Mater. Lett., 169(2016), pp. 168-171.
DOI URL |
[26] |
F.S. Pan, S.Q. Luo, A.T. Tang, J. Peng, Y. Lu, Prog. Nat. Sci., 21(2011), pp. 485-490.
DOI URL |
[27] | J.F. Nie, Y.M. Zhu, A.J. Morton, Mater. Trans. Metall. Mater. Trans. A, 45(2014), pp. 3338-3348. |
[28] | Z. Zeng, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Nat. Commun., 8 (2017), p. 972 |
[29] |
Y. Chai, C. He, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, J. Mater. Sci. Technol., 37(2020), pp. 26-37.
DOI URL |
[30] |
S.H. Lu, D. Wu, R.S. Chen, E.-H. Han, Mater. Sci. Eng. A, 735(2018), pp. 173-181.
DOI URL |
[31] |
Q. Chen, A. Tang, T. Xu, C. Ran, S. Jiang, X. Jing, Y. Deng, Z. Jiang, H. Zhou, Mater. Sci. Technol., 35(2019), pp. 978-985.
DOI URL |
[32] |
J.W. Lu, D.D. Yin, L.B. Ren, G.F. Quan, J. Mater. Sci., 51(2016), pp. 10464-10477.
DOI URL |
[33] |
T. Chen, Z. Chen, J. Shao, R. Wang, L. Mao, C. Liu, Mater. Des., 152(2018), pp. 1-9.
DOI URL |
[34] |
X. Jin, W. Xu, K. Li, X. Zeng, D. Shan, Mater. Sci. Eng. A, 729(2018), pp. 219-229.
DOI URL |
[35] |
G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol., 34(2018), pp. 1076-1084.
DOI URL |
[36] | W. Rong, Y. Zhang, Y. Wu, M. Sun, J. Chen, Y. Wang, J. Han, L. Peng, H. Ding, J. Alloys. Compd., 692(2017), pp. 805-816. |
[37] |
C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu, S. Kamado, Sci. Rep., 7(2017), pp. 1-12.
DOI URL |
[38] | M.A. Meyers, O. V?hringer, V.A. Lubarda, Acta Mater., 49(2001), p. 15. |
[39] | X. Gao, X.X. Zhang, L. Geng, Mater. Sci. Eng. A, 740(2019), pp. 353-362. |
[40] |
M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, Y. Kawamura, Acta Mater., 61(2013), pp. 6338-6351.
DOI URL |
[41] |
M. Matsuda, S. Ando, M. Nishida, Mater. Trans., 46(2005), pp. 361-364.
DOI URL |
[42] |
X. Fang, S. Lü, L. Zhao, J. Wang, L. Liu, S. Wu, Mater. Des., 94(2016), pp. 353-359.
DOI URL |
[43] | L. Zhang, X. Li, R. Li, R. Jiang, L. Zhang, Mater. Sci. Eng. A, 763 (2019), Article 138154. |
[44] |
J.F. Nie, X. Gao, S.M. Zhu, Scr. Mater., 53(2005), pp. 1049-1053.
DOI URL |
[45] |
J.F. Nie, Scr. Mater., 48(2003), pp. 1009-1015.
DOI URL |
[46] | J.-F. Nie,Mater. Trans. Metall. Mater. Trans. A, 43(2012), pp. 3891-3939. |
[47] |
W. Rong, Y.J. Wu, Y. Zhang, M. Sun, J. Chen, L.M. Peng, W.J. Ding, Mater. Charact., 126(2017), pp. 1-9.
DOI URL |
[1] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[2] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[3] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[4] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[5] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[6] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[7] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[8] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[9] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[10] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[11] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[12] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[13] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[14] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[15] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||