Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 42 Issue (0): 143-155    DOI: 10.1016/j.jmst.2019.10.011
Orginal Article Current Issue | Archive | Adv Search |
Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654
Shucai Zhangb, Huabing Liab*(), Zhouhua Jiangab, Zhixing Lib, Jingxi Wub, Binbin Zhangb, Fei Duanb, Hao Fengb, Hongchun Zhub
a State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, China
b School of Metallurgy, Northeastern University, Shenyang, 110819, China
Download:  HTML  PDF(5017KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of N on the precipitation behavior, associated corrosion, and mechanical properties of S32654 were investigated by microstructural, electrochemical, and mechanical analyses. Increasing the N content results in several alterations: (1) grain refinement, which promotes intergranular precipitation; (2) a linear increase in the driving force for Cr2N and Mo activity, which accelerates the precipitation of intergranular Cr2N and π phase, respectively; (3) a linear decrease in the driving force for σ phase and Cr activity, which suppresses the formation of intragranular σ phase. The total amount of precipitates first decreased and then increased with the N content increasing. Furthermore, the intergranular corrosion susceptibility depended substantially on the total amount of precipitates and also first exhibited a decreasing and then an increasing trend as the N content increased. In addition, aging precipitation caused a considerable decrement in the ultimate tensile strength (UTS) and a remarkable increment in the yield strength (YS). Both the UTS and YS always increased with N content increasing throughout the solution and aging process. Whereas the elongation was considerably sensitive to the aging treatment, it exhibited marginal variation with the N content increasing.

Key words:  Super austenitic stainless steel      Nitrogen      Precipitation behavior      Intergranular corrosion      Mechanical properties     
Received:  23 May 2019     
Corresponding Authors:  Li Huabing     E-mail:  huabing_li@163.com

Cite this article: 

Shucai Zhang, Huabing Li, Zhouhua Jiang, Zhixing Li, Jingxi Wu, Binbin Zhang, Fei Duan, Hao Feng, Hongchun Zhu. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654. J. Mater. Sci. Technol., 2020, 42(0): 143-155.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.10.011     OR     https://www.jmst.org/EN/Y2020/V42/I0/143

Steel C Si Mn P S Cr Ni Mo Cu N Fe
L-N 0.013 0.40 2.95 0.005 0.002 24.49 22.51 7.35 0.47 0.45 Bal.
M-N 0.012 0.38 2.91 0.005 0.002 24.46 22.52 7.34 0.46 0.50 Bal.
H-N 0.012 0.39 2.92 0.005 0.002 24.45 22.58 7.38 0.46 0.54 Bal.
Table 1  Chemical compositions of experimental super austenitic stainless steels S32654 (wt%).
Fig. 1.  Typical microstructures of S32654 after solution treatment at 1200 °C for 30 min: (a) L-N ; (b) M-N ; (c) H-N.
Fig. 2.  Microstructures of S32654 samples aged at 1000 °C for various time: (a) L-N 30 min; (b) L-N 2 h; (c) L-N 6 h; (d) M-N 30 min,; (e) M-N 2 h; (f) M-N 6 h; (g) H-N 30 min; (h) H-N 2 h; (i) H-N 6 h.
Fig. 3.  High magnification microstructures of S32654 samples aged at 1000 °C for various time: (a) L-N 30 min; (b) L-N 2 h; (c) L-N 6 h; (d) H-N 30 min; (e) H-N 2 h; (f) H-N 6 h.
Fig. 4.  TEM bright-field images and corresponding SAED patterns of precipitates in S32654 samples: (a) intergranular σ phase; (b) intragranular σ phase; (c) Cr2N; (d) π phase.
Fig. 5.  Area fraction of precipitates in S32654 steels aged at 1000 °C: (a) intergranular precipitates; (b) intragranular precipitates; (c) total precipitates.
Phase Cr Mo Ni Mn N Fe
σ phase 30.15 21.14 11.80 2.37 - 34.54
π phase 42.19 20.31 14.32 1.19 3.26 18.73
Cr2N 78.19 6.49 1.40 1.05 8.02 4.85
Table 2  Elemental compositions of σ phase, π phase and Cr2N (wt%).
Fig. 6.  Typical DL-EPR curves of S32654 steels: (a) L-N ; (b) M-N ; (c) H-N.
Fig. 7.  IGC attack morphologies of S32654 samples aged at 1000 °C for various time: (a) L-N ST; (b) L-N 30 min; (c) L-N 2 h; (d) L-N 6 h,; (e) M-N ST; (f) M-N 30 min; (g) M-N 2 h; (h) M-N 6 h; (i) H-N ST; (j) H-N 30 min; (k) H-N 2 h; (l) H-N 6 h.
Fig. 8.  IGC attack areas of S32654 steels after DL-EPR tests: (a) intergranular; (b) intragranular; (c) total.
Fig. 9.  DL-EPR values of S32654 steels aged at 1000 °C for various time.
Fig. 10.  Tensile properties versus aging time for S32654 steels aged at 1000 °C: (a) strength; (b) elongation.
Fig. 11.  Cross-section microstructure near the fracture surface of S32654 steels aged at 1000 °C for various time: (a) L-N 30 min; (b) L-N 2 h; (c) L-N 6 h; (d) M-N 30 min; (e) M-N 2 h; (f) M-N 6 h; (g) H-N 30 min; (h) H-N 2 h; (i) H-N 6 h. The white arrows indicate the tensile direction.
Fig. 12.  Magnified SEM images of the cross-section microstructure near the fracture surface of S32654 steels aged at 1000 °C for 6 h: (a) L-N ; (b) M-N ; (c) H-N. The white arrows indicate the tensile direction.
Fig. 13.  Effects of N content on the driving force and element activity in S32654 steel aged at 1000 °C: (a) driving force; (b) element activity.
[1] ASME Boiler and Pressure Vessel Cod II, Materials, Part A, Ferrous Material Specifications (Beginning to SA-450), ASME, New York, 2013, pp. 377-390.
[2] B. Wallén, M. Liljas, P. Stenvall, Mater. Corros. 44(1993) 83-88.
[3] H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, J.Z. Li, Mater. Des. 118(2017) 207-217.
[4] S. Heino, B. Karlsson, Acta Mater. 49(2001) 339-351.
[5] H.B. Li, C.T. Yang, E.Z. Zhou, C.G. Yang, H. Feng, Z.H. Jiang, D.K. Xu, T.Y. Gu, K. Yang, J. Mater. Sci. Technol. 33(2017) 1596-1603.
[6] H.B. Li, B.B. Zhang, Z.H. Jiang, S.C. Zhang, H. Feng, P.D. Han, N. Dong, W. Zhang, G.P. Li, G.W. Fan, Q.Z. Lin, J. Alloys Compd. 686(2016) 326-338.
[7] H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, P.D. Han, W. Zhang, G.P. Li, G.W. Fan, Int. J. Electrochem. Sci. 10(2015) 4832-4848.
[8] S. Nagarajan, N. Rajendran, Corros. Sci. 51(2009) 217-224.
[9] M. Talha, C.K. Behera, O.P. Sinha, Mater. Sci. Eng. C 33 (2013) 3563-3575.
[10] I. Olefjord, L. Wegrelius, Corros. Sci. 38(1996) 1203-1220.
[11] R.C. Newman, T. Shahrabi, Corros. Sci. 27(1987) 827-838.
[12] H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44(2002) 2393-2407.
[13] H. Feng, H.B. Li, X.L. Wu, Z.H. Jiang, T. Zhang, D.K. Xu, S.C. Zhang, H.C. Zhu, B.B. Zhang, M.X. Yang, J. Mater. Sci. Technol. 34(2018) 1781-1790.
[14] J. Rawersa, M. Grujicicb, Mater. Sci. Eng. A 207 (1996) 188-194.
[15] H. Hänninena, J. Romub, R. Ilolaa, J. Tervoc, A. Laitinend, J. Mater. Process. Technol. 117(2001) 424-430.
[16] Y.B. Ren, P. Wan, F. Liu, B.C. Zhang, K. Yang, J. Mater. Sci. Technol. 27(2011) 325-331.
[17] A.J. Sedriks, Corrosion 45 (1989) 510-518.
[18] M. Svoboda, A. Kroupa, J. Sopoušek, J. Vřešt’ál, P. Miodownik, Z. Metallkd. 95(2004) 1025-1030.
[19] T.H. Lee, S.J. Kim, Scr. Mater. 39(1998) 951-956.
[20] R. Jiang, B. Chen, X.C. Hao, Y.C. Ma, S. Li, K. Liu, J. Mater. Sci. Technol. 28(2012) 446-452.
[21] T.H. Lee, S.J. Kim, Y.C. Jung, Metall. Mater. Trans. A 31 (2000) 1713-1723.
[22] T. Koutsoukis, E.G. Papadopoulou, S. Zormalia, P. Kokkonidis, G. Fourlaris, Mater. Sci. Technol. 26(2010) 1041-1048.
[23] T. Koutsoukis, A. Redjaïmia, G. Fourlaris, Mater. Sci. Eng. A 561 (2013) 477-485.
[24] S. Heino, M. Knutson-Wedel, B. Karlsson, Mater. Sci.Forum 318-320(1999) 143-150.
[25] Z.G. Song, E.X. Pu, J. Iron Steel Res. Int. 24(2017) 743-749.
[26] S.C. Zhang, Z.H. Jiang, H.B. Li, B.B. Zhang, S.P. Fan, Z.X. Li, H. Feng, H.C. Zhu, Mater. Charact. 137(2018) 244-255.
[27] S.C. Zhang, Z.H. Jiang, H.B. Li, H. Feng, B.B. Zhang, J. Alloys Compd. 695(2017) 3083-3093.
[28] S.C. Zhang, H.B. Li, Z.H. Jiang, B.B. Zhang, Z.X. Li, J.X. Wu, S.P. Fan, H. Feng, H.C. Zhu, Mater. Charact. 152(2019) 141-150.
[29] L. Ma, S.S. Hu, J.Q. Shen, J. Han, Z.X. Zhu, J. Mater. Sci. Technol. 32(2016) 552-560.
[30] Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, J. Mater. Sci. Technol. 35(2019) 1240-1249.
[31] K. Chandra, V. Kain, R. Tewari, Corros. Sci. 67(2013) 118-129.
[32] X. Zhang, D.Z. Li, Y.Y. Li, S.P. Lu, J. Mater. Sci. Technol. 35(2019) 520-529.
[33] Y.C. Huang, Y. Li, Z.B. Xiao, Y. Liu, Y.T. Huang, X.W. Ren, J. Alloys Compd. 673(2016) 73-79.
[34] J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26 (2002) 273-312.
[35] J. Peng, E. Lara-Curzio, D. Shin, Calphad 66(2019), 101631.
[36] ISO12732, Corrosion of Metals and Alloys, Electrochemical Potentiokinetic Reactivation Measurement Using the Double Loop Method (based on Cihal’s Method), 2006, pp. 1-14.
[37] D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, P.K. De, Acta Mater. 50(2002) 4587-4601.
[38] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, R. Arrabal, Acta Mater. 55(2007) 2239-2251.
[39] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, 2016, PA.
[40] T. Sourmail, Mater. Sci. Technol. 17(2001) 1-14.
[41] S. Heino, Metall. Mater. Trans. A 31 (2000) 1893-2904.
[42] J. Anburaj, S.S.M. Nazirudeen, R. Narayanan, B. Anandavel, A. Chandrasekar, Mater. Sci. Eng. A 535 (2012) 99-107.
[43] S.H. Jeon, D.H. Hur, H.J. Kim, Y.S. Park, Corros. Sci. 90(2015) 313-322.
[44] K.S. Kim, J.H. Kang, S.J. Kim, Mater. Sci. Eng. A 712 (2018) 114-121.
[45] J. Gong, Y.M. Jiang, B. Deng, J.L. Xu, J.P. Hu, J. Li, Electrochim. Acta 55 (2010) 5077-5083.
[46] H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16(2009) 654-660.
[47] N.S.L. Phillips, L.S. Chumbley, B. Gleeson, J. Mater. Eng. Perform. 18(2009) 1285-1293.
[48] S. Sukumoto, Y. Oikawa, S. Tsuge, S. Nomoto, ISIJ Int. 50(2010) 445-449.
[49] J.F. Hong, D. Han, H. Tan, J. Li, Y.M. Jiang, Corros. Sci. 68(2013) 249-255.
[50] P.Z. Cheng, N. Zhong, N.W. Dai, X. Wu, J. Li, Y.M. Jiang, J. Mater. Sci. Technol. 35(2019) 1787-1796.
[51] R.K. Wang, Q.W. Zhou, Z.J. Zheng, Y. Gao, Corros. Sci. 143(2018) 390-402.
[52] S.X. Li, Y.N. He, S.R. Yu, P.Y. Zhang, Corros. Sci. 66(2013) 211-216.
[53] A. Moteshakker, I. Danaee, J. Mater. Sci. Technol. 32(2016) 282-290.
[54] Y.F. Yin, R.G. Faulkner, P. Moreton, I. Armson, P. Coyle, J. Mater. Sci. 45(2010) 5872-5882.
[55] J.S. Chen, V. Radmilovic, T.M. Devine, Corros. Sci. 30(1990) 477-494.
[56] H. Sahlaoui, K. Makhlouf, H. Sidhoma, J. Philibert, Mater. Sci. Eng. A 372 (2004) 98-108.
[57] H.J. Kim, S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, K.T. Kim, Y.S. Kim, Corros. Sci. 87(2014) 60-70.
[58] H.P. Qua, H.T. Chen, C.X. Cao, Y.P. Lang, S.X. Zhang, Y. Cui, Mater. Sci. Eng. A680(2017) 1-12.
[59] M.L.G. Byrnes, M. Grujicic, W.S. Owen, Acta Metall. 35(1987) 1853-1862.
[60] D.B. Rayaprolu, A. Hendry, Mater. Sci. Technol. 4(1988) 136-145.
[61] V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, Y.N. Petrov, Mater. Sci. Eng. A 271 (1999) 14-21.
[62] H. Bei, Y. Yamamoto, M.P. Brady, M.L. Santella, Mater. Sci. Eng. A 527 (2010) 2079-2086.
[63] G. Trotter, I. Baker, Mater. Sci. Eng. A 627 (2015) 270-276.
[64] S. Heino, E.M. Knutson-Wedel, B. Karlsson, Mater. Sci. Technol. 15(1999) 101-108.
[65] B. Kartik, R. Veerababu, M. Sundararaman, D.V.V. Satyanarayana, Mater. Sci. Eng. A 642 (2015) 288-296.
[66] M. Talha, C.K. Behera, O.P. Sinha, Mater. Sci. Eng. C 47 (2015) 196-203.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential[J]. 材料科学与技术, 2020, 43(0): 168-174.
[3] Feng Zhong, Huajie Wu, Yunlei Jiao, Ruizhi Wu, Jinghuai Zhang, Legan Hou, Milin Zhang. Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg-8Li-1Al alloy[J]. 材料科学与技术, 2020, 39(0): 124-134.
[4] Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4[J]. 材料科学与技术, 2020, 39(0): 161-166.
[5] Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel[J]. 材料科学与技术, 2020, 47(0): 131-141.
[6] S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases[J]. 材料科学与技术, 2020, 45(0): 117-124.
[7] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[8] Qi Wang, Wen Shi, Bo Zhu, Dang Sheng Su. An effective and green H2O2/H2O/O3 oxidation method for carbon nanotube to reinforce epoxy resin[J]. 材料科学与技术, 2020, 40(0): 24-30.
[9] Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. 材料科学与技术, 2020, 40(0): 88-98.
[10] Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. 材料科学与技术, 2020, 41(0): 199-208.
[11] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[12] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[13] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[14] Honglei Hu, Mingjiu Zhao, Lijian Rong. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering[J]. 材料科学与技术, 2020, 47(0): 152-161.
[15] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.