Please wait a minute...
J. Mater. Sci. Technol.  2015, Vol. 31 Issue (11): 1118-1124    DOI: 10.1016/j.jmst.2015.09.007
Orginal Article Current Issue | Archive | Adv Search |
Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al-TM-RE Based Amorphous Alloys
Ram S. Maurya, Tapas Laha
Department of Metallurgical & Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, IndiaDepartment of Metallurgical & Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86Ni6Y6Co2, Al86Ni8La6 and Al86Ni8Y4.5La1.5) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.
Key words:  Al-TM-RE amorphous alloy      Mechanical alloying      Glass forming ability      Microstructural transformation      Intermetallics      Glass transition temperature     
Received:  13 March 2015     
Fund: The author T. Laha thankfully acknowledges the financial support obtained from the Science and Engineering Research Board, Department of Science & Technology, Government of India (SB/S3/ME/0044/2013) and Sponsored Research and Industrial Consultancy, Indian Institute of Technology Kharagpur, India (GAF).
Corresponding Authors:  * Corresponding author. Ph.D.; Tel.: +91 3222 283242; Fax: +91 3222 282280.E-mail address: laha@metal.iitkgp.ernet.in> (T. Laha).     E-mail:  laha@metal.iitkgp.ernet.in

Cite this article: 

Ram S. Maurya, Tapas Laha. Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al-TM-RE Based Amorphous Alloys. J. Mater. Sci. Technol., 2015, 31(11): 1118-1124.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2015.09.007     OR     https://www.jmst.org/EN/Y2015/V31/I11/1118

  Scanning electron micrographs of Al86Ni8Y4.5La1.5 powder mixture milled for (a) 1 h, (b) 20 h, (c) 40 h and (d) 80 h, showing decreasing particle size with progress in milling time.
  Variation in crystallite size and lattice microstrain in the various powder mixtures with progress in milling time.
  XRD spectra showing the variation in degree of amorphization with varying alloying composition and milling time.
  High resolution TEM micrographs and corresponding selected area diffraction patterns for the alloys: (a) Al86Ni8Y6, (b) Al86Ni6Y6Co2, (c) Al86Ni8La6 and (d) Al86Ni8Y4.5La1.5 milled for 80 h showing partial amorphization with formation of nanocrystalline Al and various intermetallics.
  HRTEM micrographs and corresponding selected area diffraction patterns of (a) Al86Ni8Y6 and (b) Al86Ni8La6 milled for 140 h.
  DSC thermograms of (a) Al86Ni8Y6, (b) Al86Ni6Y6Co2, (c) Al86Ni8La6, (d) Al86Ni8Y4.5La1.5 milled for 140 h showing various phase transitions.
[1] A. Inoue,Acta Mater, 48 (2000), pp. 279-306
[2] N. Nishiyama, A. Inoue, MRS Bull, 32 (2007), pp. 651-658
[3] A. Inoue, N. Matsumoto, T. Masumoto,Mater. Trans. JIM, 31 (1990), pp. 493-500
[4] A.K. Gangopadhaya, K.F. Kelton, Philos. Mag. A, 80 (2000), pp. 1193-1206
[5] Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, Z.P. Lu,Acta Mater, 59 (2011), pp. 2928-2936
[6] J. Schroers,Adv. Mater, 22 (2010), pp. 1566-1597
[7] J.Q. Wang, P. Dong, W.L. Hou, X.C. Chang, M.X. Quan,J. Alloy. Compd, 554 (2013), pp. 419-425
[8] B.A. Sun, M.X. Pan, D.Q. Zhao, W.H. Wang, X.K. Xi, M.T. Sandor, Y. Wu,Scripta Mater, 59 (2008), pp. 1159-1162
[9] B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma,Scripta Mater, 61 (2009), pp. 423-426
[10] B.J. Yang, J.H. Yao, Y.S. Chao, J.Q. Wang, E. Ma,Philos. Mag, 90-23 (2010), pp. 3215-3231
[11] Z. Zhang, X.Z. Xiong, W. Zhou, X. Lin, A. Inoue, J.F. Li,Intermetallics, 42 (2013), pp. 23-31
[12] C. Suryanarayana,Mechanical Alloying and Milling,Marcel Dekker Press, New York (2004)
[13] J. Eckert, M. Seidel, L. Schultz,Mater. Sci. Forum, 225-227 (1996), pp. 113-118
[14] J.S. Kim, I.V. Povstugar, P.P. Choi, E.P. Yelsukov, Y.S. Kwon,J. Alloy. Compd, 486 (2009), pp. 511-514
[15] R. Zheng, Y. Sun, W. Xiao, K. Ameyama, C. Ma,Mater. Sci. Eng. A, 606 (2014), pp. 426-433
[16] H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma,Appl. Phys. Lett, 87 (2005), p. 181915
[17] E.S. Park, D.K. KimaAppl. Phys. Lett, 86 (2005), p. 201912
[18] R. Li, S.J. Pang, H. Men, C.L. Ma, T. Zhang,Scripta Mater, 54 (2006), pp. 1123-1126
[19] H.W. Sheng, Y.Q. Cheng, P.L. Lee, S.D. Shastri, E. Ma,Acta Mater, 56 (2008), pp. 6264-6272
[20] T.H. Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels,J. Appl. Cryst, 15 (1982), pp. 308-314
[21] B.S. Murthy, M.M. Rao, S. Ranganathan,Acta Metall. Mater, 43 (1995), pp. 2443-2450
[22] D. Hull, D.J. Bacon,Introduction to Dislocations,Elsevier Press, UK (2001)
[23] V. Raghavan,Material Science and Engineering,Prentice-Hall of India Private Limited Press, New Delhi (1993)
[24] T. Benameur, A. Inoue, T. Masumoto,Mater. Trans. JIM, 35 (1994), pp. 451-457
[25] C. Suryanarayana,Intermetallics, 3 (1995), pp. 153-160
[26] G. Li, W. Wang, X. Bian, L. Wang, J. Zhang, R. Li, T. Huang,J. Mater. Sci. Technol, 26 (2010), pp. 146-150
[27] D.R. Gaskell,Introduction to Thermodynamics of Materials, School of Materials Engineering,Purdue University Press, West Lafayette, IN (2008)
[28] J. Hunt, I. Soletta, L. Battezzati, N. Cowlam, G. Cocco,J. Alloy. Compd, 194 (1993), pp. 311-317
[29] R. Raggio, G. Borzone, R. Ferro,Intermetallics, 8 (2000), pp. 247-257
[30] T. Benameur, A. Inoue,Mater. Trans. JIM, 36 (1995), pp. 240-250
[31] C.S. Ma, J. Zhang, W.L. Hou, X.C. Chang, J.Q. Wang,Philos. Mag. Lett, 88 (2008), pp. 599-605
[32] M. Dittrich, G. Schumacher,Mater. Sci. Eng. A, 604 (2014), pp. 27-33
[1] T. Sapanathan, N. Jimenez-Mena, I. Sabirov, M.A. Monclús, J.M. Molina-Aldareguía, P. Xia, L. Zhao, A. Simar. A new physical simulation tool to predict the interface of dissimilar aluminum to steel welds performed by friction melt bonding[J]. 材料科学与技术, 2019, 35(9): 2048-2057.
[2] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[3] Liu Qing, Wang Guofeng, Sui Xiaochong, Liu Yongkang, Li Xiao, Yang Jianlei. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering[J]. 材料科学与技术, 2019, 35(11): 2600-2607.
[4] Yinxiao Wang, Jiahao Yao, Yi Li. Glass formation adjacent to the intermetallic compounds in Cu-Zr binary system[J]. 材料科学与技术, 2018, 34(4): 605-612.
[5] studyHui Xing, Anping Dong, Jian Huang, Jiao Zhang, Baode Sun. Revisiting intrinsic brittleness and deformation behavior of B2 NiAl intermetallic compound: A first-principles study[J]. 材料科学与技术, 2018, 34(4): 620-626.
[6] Juan Wang, Bin Li, Shuai Ren, Rui Li, Tao Wang, Guojun Zhang. Enhanced oxidation resistance of Mo-12Si-8.5B alloys with ZrB2 addition at 1300°C[J]. 材料科学与技术, 2018, 34(4): 635-642.
[7] Huang Chunjie, Li Wenya, Planche Marie-Pierre, Liao Hanlin, Montavon Ghislain. In-situ formation of Ni-Al intermetallics-coated graphite/Al composite in a cold-sprayed coating and its high temperature tribological behaviors[J]. 材料科学与技术, 2017, 33(6): 507-515.
[8] Zhao Ke, Cao Baobao, Liu Jinling, Wang Yiguang, An Linan. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite[J]. 材料科学与技术, 2017, 33(10): 1177-1181.
[9] Yulin Liu, Lei Luo, Chaofei Han, Liangyun Ou, Jijie Wang, Chunzhong Liu. Effect of Fe, Si and Cooling Rate on the Formation of Fe- and Mn-rich Intermetallics in Al-5Mg-0.8Mn Alloy[J]. J. Mater. Sci. Technol., 2016, 32(4): 305-313.
[10] Tan Zhen,Wang Lu,Xue Yunfei,Cheng Xingwang,Zhang Long. Structural Modification of Al65Cu16.5Ti18.5 Amorphous Powder through Annealing and Post Milling: Improving Thermal Stability[J]. 材料科学与技术, 2016, 32(12): 1326-1331.
[11] Hefei Huang, Chao Yang, Massey de los Reyes, Yongfeng Zhou, Long Yan, Xingtai Zhou. Effect of Milling Time on the Microstructure and Tensile Properties of Ultrafine Grained Ni-SiC Composites at Room Temperature[J]. J. Mater. Sci. Technol., 2015, 31(9): 923-929.
[12] Bin Li, Guojun Zhang, Feng Jiang, Shuai Ren, Gang Liu, Jun Sun. Characterization of Mo-Si-B Nanocomposite Powders Produced Using Mechanical Alloying and Powder Heat Treatment[J]. J. Mater. Sci. Technol., 2015, 31(10): 995-1000.
[13] H. Barekatain, M. Kazeminezhad, A.H. Kokabi. Microstructure and Mechanical Properties in Dissimilar Butt Friction Stir Welding of Severely Plastic Deformed Aluminum AA 1050 and Commercially Pure Copper Sheets[J]. J. Mater. Sci. Technol., 2014, 30(8): 826-834.
[14] Baogang Yang, Songlin Li, Hang Wang, Jintao Xiang, Qiumin Yang. Effect of MWCNTs Additive on Desorption Properties of Zn(BH4)2 Composite Prepared by Mechanical Alloying[J]. J. Mater. Sci. Technol., 2013, 29(8): 715-719.
[15] Kahtan S. Mohammed, Azmi Rahmat, Khairel R. Ahmad. Sintering Behavior and Microstructure Evolution of Mechanically Alloyed W-Bronze Composite Powders by Two-step Ball Milling Process[J]. J. Mater. Sci. Technol., 2013, 29(1): 59-69.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.