J. Mater. Sci. Technol. ›› 2021, Vol. 65: 137-150.DOI: 10.1016/j.jmst.2020.03.081
• Research Article • Previous Articles Next Articles
Junwei Changa,b, Zhenyu Wangb,*(), En-hou Hanb,*(
), Xinlei Liangc, Gang Wangc, Zuyao Yic, Na Lic
Received:
2019-12-03
Revised:
2020-03-16
Accepted:
2020-03-22
Published:
2021-02-28
Online:
2021-03-15
Contact:
Zhenyu Wang,En-hou Han
About author:
ehhan@imr.ac.cn (E.-h. Han).Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments[J]. J. Mater. Sci. Technol., 2021, 65: 137-150.
Samples | Rust treatment | Composition |
---|---|---|
1 | None | 99.5 wt% epoxy resin E51 + 0.5 wt% BYK-108 dispersant |
2 | Tannic acid | Coating 1 |
3 | Tannic acid | Coating 1 + 3 wt% tannic acid |
4 | Tannic acid | Coating 1 + 3 wt% tannic acid + 3 wt% limonene |
5 | Tannic acid | Coating 1 + 3 wt% tannic acid + 3 wt% limonene + 3 wt% ZrO2 |
Table 1 The composition of five coatings.
Samples | Rust treatment | Composition |
---|---|---|
1 | None | 99.5 wt% epoxy resin E51 + 0.5 wt% BYK-108 dispersant |
2 | Tannic acid | Coating 1 |
3 | Tannic acid | Coating 1 + 3 wt% tannic acid |
4 | Tannic acid | Coating 1 + 3 wt% tannic acid + 3 wt% limonene |
5 | Tannic acid | Coating 1 + 3 wt% tannic acid + 3 wt% limonene + 3 wt% ZrO2 |
Fig. 6. SEM images of surface morphologies for different samples after 264 h acid immersion at 60 °C: (a) coating 1; (b) coating 2; (c) coating 3; (d) coating 4; (e) coating 5.
Fig. 7. Cross-section morphology and corresponding element mapping of different coatings after 264 h immersion: (a) coating 1; (b) coating 2; (c) coating 3; (d) coating 4; (e) coating 5.
Samples | Ecorr (mV vs. SCE) | Icorr (μA cm-2) |
---|---|---|
1 | -596.1 ± 0.7 | 2.260 ± 0.010 |
2 | -588.6 ± 0.6 | 0.785 ± 0.008 |
3 | -585.4 ± 0.5 | 0.523 ± 0.006 |
4 | -577.9 ± 0.6 | 0.191 ± 0.007 |
5 | -569.3 ± 0.5 | 0.111 ± 0.005 |
Table 2 Polarization parameters for five different coatings immersed in hybrid acid solution for 264 h.
Samples | Ecorr (mV vs. SCE) | Icorr (μA cm-2) |
---|---|---|
1 | -596.1 ± 0.7 | 2.260 ± 0.010 |
2 | -588.6 ± 0.6 | 0.785 ± 0.008 |
3 | -585.4 ± 0.5 | 0.523 ± 0.006 |
4 | -577.9 ± 0.6 | 0.191 ± 0.007 |
5 | -569.3 ± 0.5 | 0.111 ± 0.005 |
Fig. 9. EIS diagram of coating 1 for different immersion time. (a-c) Nyquist diagrams: (a) 0-12 h, (b) 24-72 h, (c) 96-264 h; (d) Bode modulus plots; (e) Bode phase angle plots.
Fig. 10. EIS diagram of coating 2 for different immersion time. (a, b) Nyquist diagrams: (a) 0-96 h, (b) 120-264 h; (c) Bode modulus plots; (d) Bode phase angle plots.
Fig. 11. EIS spectra of coating 3 for different immersion time. (a, b) Nyquist diagrams: (a) 0-24 h, (b) 48-264 h; (c) Bode modulus plots; (d) Bode phase angle plots.
[1] |
F. Bentiss, M. Lagrenee, M. Traisnel, J.C. Hornez, Corros. Sci. 41 (1999) 789-803.
DOI URL |
[2] |
M.A. Amin, S.S.A. El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, Electrochim. Acta 52 (2007) 3588-3600.
DOI URL |
[3] |
W. Xu, Z. Wang, E.H. Han, C. Liu, J. Mater. Eng. Perform. 26 (2017) 1-14.
DOI URL |
[4] |
W. Xu, Z. Wang, E.H. Han, S. Wang, Q. Liu, Materials 11 (2018) 934.
DOI URL |
[5] |
C. Zhou, X. Lu, Z. Xin, J. Liu, Corros. Sci. 70 (2013) 145-151.
DOI URL |
[6] |
S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu, J. Mater. Sci. Technol. 32 (2016) 425-431.
DOI URL |
[7] |
Z. Zhang, R. Zeng, C. Lin, L. Wang, X. Chen, D. Chen, J. Mater. Sci. Technol. 41 (2020) 43-55.
DOI URL |
[8] |
L. Guo, C. Gu, J. Feng, Y. Guo, Y. Jin, J. Tu, J. Mater. Sci. Technol. 37 (2020) 9-18.
DOI URL |
[9] |
T.A. Truc, T.T.X. Hang, V.K. Oanh, E. Dantras, C. Lacabanne, D. Oquab, N. Pebere, Surf. Coat. Technol. 202 (2008) 4945-4951.
DOI URL |
[10] |
M.M. Popovic, B.N. Grgur, V.B. Miskovic-Stankovic, Prog. Org. Coat. 52 (2005) 359-365.
DOI URL |
[11] |
L. Shi, X. Yang, Y. Song, D. Liu, K. Dong, D. Shan, E.H. Han, J. Mater. Sci. Technol. 35 (2019) 1886-1893.
DOI URL |
[12] |
F.T. Shirehjini, I. Danaee, H. Eskandari, D. Zarei, J. Mater. Sci. Technol. 32 (2016) 1152-1160.
DOI URL |
[13] |
L.M. Ocampo, I.C.P. Margarit, O.R. Mattos, S.I. Cordoba-De-Torresi, F.L. Fragata, Corros. Sci. 46 (2004) 1515-1525.
DOI URL |
[14] |
S.N. Roselli, B. del Amo, R.O. Carbonari, A.R. Di Sarli, R. Romagnoli, Corros. Sci. 74 (2013) 194-205.
DOI URL |
[15] |
J.F. Li, S.S. Ge, J.X. Wang, H.Y. Du, K.N. Song, Z.Y. Fei, Q. Shao, Z.H. Guo, Eng. Asp. 537 (2018) 334-342.
DOI URL |
[16] |
J. Mabrour, M. Akssira, M. Azzi, M. Zertoubi, N. Saib, A. Messaoudi, A. Albizane, S. Tahiri, Corros. Sci. 46 (2004) 1833-1847.
DOI URL |
[17] |
A.A. Rahim, E. Rocca, J. Steinmetz, M.J. Kassim, Corros. Sci. 50 (2008) 1546-1550.
DOI URL |
[18] |
A.A. Rahim, E. Rocca, J. Steinmetz, M.J. Kassim, R. Adnan, M.S. Ibrahim, Corros. Sci. 49 (2007) 402-417.
DOI URL |
[19] |
A.A. Rahim, J. Kassim, Recent Pat. Mater. Sci. 1 (2008) 223-231.
DOI URL |
[20] |
A. Collazo, X.R. Novoa, C. Perez, B. Puga, Electrochim. Acta 55 (2010) 6156-6162.
DOI URL |
[21] |
Y. Gonzalez-Garcia, S. Gonzalez, R.M. Souto, Corros. Sci. 49 (2007) 3514-3526.
DOI URL |
[22] |
E.P.M. Vanwesting, G.M. Ferrari, J.H.W. Dewit, Corros. Sci. 34 (1993) 1511-1530.
DOI URL |
[23] |
E.P.M. Vanwesting, G.M. Ferrari, J.H.W. Dewit, Corros. Sci. 36 (1994) 957-977.
DOI URL |
[24] |
B. Qian, B. Hou, M. Zheng, Corros. Sci. 72 (2013) 1-9.
DOI URL |
[25] | A.Y. Ei-Etre, J.Colloid Interf. Sci. 314 (2007) 578-583. |
[26] |
S. Martinez, I. Stern, J. Appl. Electrochem. 31 (2001) 973-978.
DOI URL |
[27] |
S. Martinez, Mater. Chem. Phys. 77 (2003) 97-102.
DOI URL |
[28] | S. Martinez, I. Stern, Chem. Biochem. Eng. Q. 13 (1999) 191-199. |
[29] |
A. Djouahri, S. Sebiane, F. Kellou, L. Lamari, N. Sabaou, A. Baaliouamer, L. Boudarene, J. Essent. Oil Res. 29 (2016) 169-178.
DOI URL |
[30] |
D. Del Angel-Lopez, M.A. Dominguez-Crespo, A.M. Torres-Huerta, A. Flores-Vela, J. Andraca-Adame, H. Dorantes-Rosales, J. Mater. Sci. 48 (2013) 1067-1084.
DOI URL |
[31] |
G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusma, S. Kaciulis, A. Mezzi, R. Di Maggio, Surf. Coat. Technol. 201 (2007) 5822-5828.
DOI URL |
[32] |
J.F. Quinson, C. Chino, A.M. DeBecdelievre, C. Guizard, M. Brunel, J. Mater. Sci. 31 (1996) 5179-5184.
DOI URL |
[33] |
D.L. A. deFaria, S.V. Silva, M.T. deOliveira, J. Raman Spectrosc. 28 (1997) 873-878.
DOI URL |
[34] |
W. Funke, Prog. Org. Coat. 31 (1997) 5-9.
DOI URL |
[35] |
A. Abdal-Hay, M. Dewidar, J.K. Lim, Appl. Surf. Sci. 261 (2012) 536-546.
DOI URL |
[36] |
S.H. Yoo, Y.W. Kim, K. Chung, S.Y. Baik, J.S. Kim, Corros. Sci. 59 (2012) 42-54.
DOI URL |
[37] |
Y. Shao, C. Jia, G. Meng, T. Zhang, F. Wang, Corros. Sci. 51 (2009) 371-379.
DOI URL |
[38] |
Y. Huang, S. Hong, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, F. Mansfeld, Corros. Sci. 50 (2008) 3569-3575.
DOI URL |
[39] |
M. Yan, C.A. Vetter, V.J. Gelling, Corros. Sci. 70 (2013) 37-45.
DOI URL |
[40] |
X. Liu, J. Xiong, Y. Lv, Y. Zuo, Prog. Org. Coat. 64 (2009) 497-503.
DOI URL |
[41] |
H. Vakili, B. Ramezanzadeh, R. Amini, Corros. Sci. 94 (2015) 466-475.
DOI URL |
[42] |
H. Shi, F. Liu, L. Yang, E. Han, Prog. Org. Coat. 62 (2008) 359-368.
DOI URL |
[43] | M. Sabzi, S.M. Mirabedini, J. Zohuriaan-Mehr, M. Atai, Prog. Org. Coat. 65 (2009) 222-228. |
[44] |
S.M. Mirabedini, G.E. Thompson, S. Moradian, J.D. Scantlebury, Prog. Org. Coat. 46 (2003) 112-120.
DOI URL |
[45] | J.R. Scully, J. Electrochem. Soc. 126 (1989) 979-990. |
[46] |
J.A. Calderon-Gutierrez, F.E. Bedoya-Lora, Dyna 81 (2014) 97-106.
DOI URL |
[47] |
E. Potvin, L. Brossard, G. Larochelle, Prog. Org. Coat. 31 (1997) 363-373.
DOI URL |
[48] |
A. Balamurugan, S. Kannan, S. Rajeswari, Mater. Lett. 57 (2003) 4202-4205.
DOI URL |
[1] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[2] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[3] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[4] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
[5] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[6] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[7] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[8] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[9] | Liting Guo, Changdong Gu, Jie Feng, Yongbin Guo, Yuan Jin, Jiangping Tu. Hydrophobic epoxy resin coating with ionic liquid conversion pretreatment on magnesium alloy for promoting corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 37(0): 9-18. |
[10] | Lei Liu, Liang Wu, Xiaobo Chen, Deen Sun, Yuan Chen, Gen Zhang, Xingxing Ding, Fusheng Pan. Enhanced protective coatings on Ti-10V-2Fe-3Al alloy through anodizing and post-sealing with layered double hydroxides [J]. J. Mater. Sci. Technol., 2020, 37(0): 104-113. |
[11] | Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41(0): 191-198. |
[12] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[13] | Wang Jian, Cui Lanyue, Ren Yande, Zou Yuhong, Ma Jinlong, Wang Chengjian, Zheng Zhongyin, Chen Xiaobo, Zeng Rongchang, Zheng Yufeng. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47(0): 52-67. |
[14] | Xiao-Li Fan, Chang-Yang Li, Yu-Bo Wang, Yuan-Fang Huo, Shuo-Qi Li, Rong-Chang Zeng. Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 49(0): 224-235. |
[15] | H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process [J]. J. Mater. Sci. Technol., 2020, 36(0): 50-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||