J. Mater. Sci. Technol. ›› 2021, Vol. 66: 157-162.DOI: 10.1016/j.jmst.2020.05.075
• Research Article • Previous Articles Next Articles
Jiahui Chena,b, Dainan Zhanga,b,*(), Song Hec, Gengpei Xiac, Xiaoyi Wangb, Quanjun Xianga, Tianlong Wenb, Zhiyong Zhongb, Yulong Liaoa,b,*(
)
Received:
2020-04-29
Accepted:
2020-05-27
Published:
2021-03-10
Online:
2021-04-01
Contact:
Dainan Zhang,Yulong Liao
About author:
yulong.liao@uestc.edu.cn (Y. Liao).Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification[J]. J. Mater. Sci. Technol., 2021, 66: 157-162.
Fig. 1. Schematics of conventional solar water evaporation with direct water contact (a), new-designed solar water evaporation devices with suppressed heat loss (b).
Fig. 2. Characterizations of wood and F-wood. (a) molecular structures of cellulose, hemicellulose, and lignin (the three main components of wood, n is the degree of polymerization), (b) and (c) top view SEM images of wood, (d) cross-sectional view SEM images of wood, (e) absorption spectra of wood (red line) and F-wood (black line).
Fig. 3. Evaporation performance of different samples: (a) fabricated new-designed devices: (left) wood as water path, (middle) polystyrene foam filled inside the wood as thermal insulator, and (right) flame-treated surface as heat absorber. (b) temperature distribution of the beaker (with different samples) under the solar light irradiation as a function of time, (c) temperature variations of water with different samples over time, (d) mass change of water and (e) water evaporation rate with different samples over time.
Fig. 4. Performances of F-F-wood based devices with different ratio between wood and polystyrene foam: (a) simulation diagram, (b) surface temperature variations, and (c) mass change of water, with different samples (S1, S2, S3, S4); (d) surface temperature variations of sample S2 and bottom water under the solar light irradiation as a function of time (The inset shows infrared photos of the beaker after 300 s, 40 min illumination. Black dashed lines are the contour of beaker and the white lines are the position of free-floating sample).
Fig. 5. Water treatment performances of F-F-wood device (S2). (a) purification of organic dye and heavy metal ions, (b) organic dye and heavy metal ions rejection performance, (c) schematic illustration of water purification under natural one-sun illumination and actual photos of all-in-one solar distillation setup for freshwater evaporation and collection during a daytime, (d) solar radiation recorded over time on a sunny day from 09:00 to 18:00 (solid green line) with tracing of internal relative humidity (RH; background color map) and temperatures of the F-F-wood surface (red broken line), internal air (blue broken line), and condenser (violet broken line), (e) evaluation of water purity using a multimeter with a constant distance between electrodes (the results demonstrated a high purity of purified water).
[1] |
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452 (2008) 301-310.
DOI URL PMID |
[2] |
K. Bae, G. Kang, S.K. Cho, W. Park, K. Kim, W.J. Padilla, Nat. Commun. 6 (2015) 10103.
URL PMID |
[3] | L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Sci. Adv. 2 (2016), 1501227. |
[4] |
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photon. 10 (2016) 393-398.
DOI URL |
[5] |
O. Neumann, C. Feronti, A.D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N.J. Halas, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11677-11681.
DOI URL PMID |
[6] |
O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, N.J. Halas, ACS Nano 7 (2013) 42-49.
DOI URL |
[7] |
G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M.M. Rahman, T. Zhang, G. Chen, Nano Energy 17 (2015) 290-301.
DOI URL |
[8] |
Z. He, C. Kim, T.H. Jeon, W. Choi, Appl. Catal. B 237 (2018) 772-782.
DOI URL |
[9] |
Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin, X. Wang, W. Choi, Nano Energy 42 (2017) 58-68.
DOI URL |
[10] |
X. Yin, Y. Guo, H. Xie, W. Que, L.B. Kong, Solar R.R.L. 3 (2019) 1900001.
DOI URL |
[11] |
D. Zhang, J. Chen, P. Deng, X. Wang, Y. Li, T. Wen, Y. Li, Q. Xiang, Y. Liao, J. Am. Ceram. Soc. 102 (2019) 1-8.
DOI URL |
[12] |
H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 5 (2014) 5449.
DOI URL PMID |
[13] |
X. Wang, Y. Liao, H. Zhang, T. Wen, D. Zhang, Y. Li, M. Liu, F. Li, Q. Wen, Z. Zhong, X. Yin, ACS Appl. Mater. Interfaces 10 (2018) 3644-3651.
DOI URL PMID |
[14] |
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11 (2018) 1362-1391.
DOI URL |
[15] |
O. Vay, K. De Borst, C. Hansmann, A. Teischinger, U. Mueller, Wood Sci. Technol. 49 (2015) 577-589.
DOI URL |
[16] |
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photon. 10 (2016) 393.
DOI URL |
[17] |
Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, A.C.S. Floatable, Appl. Mater. Interfaces 7 (2015) 13645-13652.
DOI URL |
[18] |
Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, Adv. mater. 27 (2015) 2768-2774.
DOI URL PMID |
[19] |
Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R Raliya, P. Biswas, R.R. Naik, S. Singamaneni, Adv. mater. 28 (2016) 9400-9407.
DOI URL PMID |
[20] |
X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13953-13958.
DOI URL PMID |
[21] |
C. Plomion, G. Leprovost, A. Stokes, Plant Physiol. 127 (2001) 1513-1523.
URL PMID |
[22] | C. Jia, Y. Li, Z. Yang, G. Chen, Y. Yao, F. Jiang, Y. Kuang, G. Pastel, H. Xie, B. Yang, S. Das, L. Hu, Joule 1 (2017) 588-599. |
[23] | A.C. O’Sullivan, Cellulose 4 (1997) 173-207. |
[24] |
H.V. Scheller, P. Ulvskov, Annu. Rev. Plant Biol. 61 (2010) 263-289.
URL PMID |
[25] |
L.A. Rogers, M.M. Campbell, New Phytol. 164 (2004) 17-30.
URL PMID |
[26] | O. Vay, K. De Borst, C. Hansmann, A. Teischinger, U. Müller, Wood Sci. Technol. 49 (2015) 577-589. |
[27] |
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9 (2007) 1276-1291.
DOI URL PMID |
[28] |
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, W. Guo, Nat. Nanotechnol. 12 (2017) 317-321.
DOI URL PMID |
[1] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[2] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
[3] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[4] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[5] | Dan He, Haiyan Li. Biomaterials affect cell-cell interactions in vitro in tissue engineering [J]. J. Mater. Sci. Technol., 2021, 63(0): 62-72. |
[6] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[7] | Zhi Yang, Jian Li, Xiaojing Xu, Shengyang Pang, Chenglong Hu, Penglei Guo, Sufang Tang, Hui-Ming Cheng. Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange [J]. J. Mater. Sci. Technol., 2020, 50(0): 66-74. |
[8] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
[9] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[10] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[11] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[12] | Chang-Yang Li, Xiao-Li Fan, Rong-Chang Zeng, Lan-Yue Cui, Shuo-Qi Li, Fen Zhang, Qing-Kun He, M. Bobby Kannan, , Dong-Chu Chen, Shao-Kang Guan. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35(6): 1088-1098. |
[13] | H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev. Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2156-2162. |
[14] | Xingfu Wang, Xinfu Wang, Dan Wang, Modi Zhao, Fusheng Han. A novel approach to fabricate Zn coating on Mg foam through a modified thermal evaporation technique [J]. J. Mater. Sci. Technol., 2018, 34(9): 1558-1563. |
[15] | Chunbao Wang, Jing Zhang, Fan Yang, Chang Du. One-shot method for purification of multiple natural amelogenin isoforms [J]. J. Mater. Sci. Technol., 2018, 34(3): 481-487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||