J. Mater. Sci. Technol. ›› 2021, Vol. 63: 62-72.DOI: 10.1016/j.jmst.2020.03.022
• Invited Review • Previous Articles Next Articles
Received:
2019-11-22
Revised:
2019-12-26
Accepted:
2020-01-23
Published:
2021-02-10
Online:
2021-02-15
Contact:
Haiyan Li
About author:
*Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.E-mail address: haiyan.li@sjtu.edu.cn (H. Li).Dan He, Haiyan Li. Biomaterials affect cell-cell interactions in vitro in tissue engineering[J]. J. Mater. Sci. Technol., 2021, 63: 62-72.
Fig. 1. Co-culture model systems used for the analysis of cell-to-cell interactions. (a): Communication of cells in direct contact co-cultures. The crosstalk between two types of cells can be studied by seeding the cells together in 2D or 3D co-culture systems. (b): Communication of cells without direct contact. All images are reproduced with permission from Trends in biotechnology 27 (2009) 562-71 (Copyright ? 2009 Elsevier Ltd. All rights reserved.).
Fig. 2. Illustration of the paracrine effects in the communications between HDF and HUVEC for angiogenesis stimulated by CS extracts. All images are reproduced with permission from Acta biomaterialia 9 (2013) 6981-91 (Copyright ? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.).
Fig. 3. Schematic of the MSCs under the influence of scaffolds to generate paracrine products to modulate the cell communication network toward tissue repair/regeneration. All images are reproduced with permission from Biomaterials 141 (2017) 74-85 (? 2017 The Authors. Published by Elsevier Ltd.).
Fig. 4. (A) The proposed mechanism through which the CS stimulated the interactions between HUVECs and HBMSCs in co-cultures, which finally enhanced the osteogenesis and angiogenesis/vascularization. (B) Blood vessel analysis of different implants at 2 and 6 weeks. (a) In H&E-stained sections, functional blood vessels were defined by structures that had a clearly defined lumen containing red blood cells (arrows). Bar =50 mm. (b) Shows the statistical analysis of blood vessels after the microvessel counting was done at ×200. (C) (a) Areas of mineralized matrix in different implants as indicated by von Kossa staining (black regions, arrows). Bar =100 mm. (b) shows the percentage of the dark area surface to the total surface of images taken from groups with HBMSC transplantation and analyzed by MATLAB. All images are reproduced with permission from Biomaterials 35 (2014) 3803-18 (Copyright ? 2014 Elsevier Ltd. All rights reserved.).
Fig. 5. Inhibition of osteoclastogenesis of RAW264.7 cells by the osteon-like concentric microgrooved surface. All images are reproduced with permission from Biomaterials 216 (2019) 119,269 (? 2019 Elsevier Ltd. All rights reserved.).
Fig. 6. Overall effects and mechanism of “ion therapy” on AMI treatment. “Ion therapy” can significantly improve cardiac function in mice post-AMI by stimulating Cx43 mediated gap junction thus promoting VEGF-mediated angiogenesis and by inhibiting caspase 3-associated apoptosis. All images are reproduced with permission from Advanced Science 6 (2019) 1,801,260 (licensed under a Creative Commons Attribution license.).
Biomaterial signals | Cell-cell co-culture system | cell-cell interactions |
---|---|---|
chemical signal | HUVECs-HDFs, fibroblasts-keratinocytes, macrophages-HUVECs, macrophages-HDFs, HBMSCs-HUVECs, osteoblast-osteoclast, macrophages-MSCs, cardiomyocytes/HUVECs, hNSPCs-ECs, | VEGF, bFGF, IL-1α, KGF, VE-cad, Cx43, IL-10, TGF-β, BMP-2, PDGF, |
structural signal | hADSCs-HUVECs, HUVECs-osteoblasts, MSCs-HUVECs, mMSCs-osteoclasts, cardiomyocytes-fibroblasts, DRGs-MPCs, DRGs-ECs, | VEGF, CD31, M-CSF, OPG, RANKL, VEGF-A |
mechanical signal | macrophages-BMMSCs, CMs-CFs, MSCs-fibroblasts, Schwann cells-PC12s | Cx43, TNF-α, NO, IL-10, Arg, VEGF, IGF-1 |
combined signal | HUVECs-HDFs | VEGF, bFGF, Cx43 |
Table 1 Effects of biomaterials on cell-cell interactions.
Biomaterial signals | Cell-cell co-culture system | cell-cell interactions |
---|---|---|
chemical signal | HUVECs-HDFs, fibroblasts-keratinocytes, macrophages-HUVECs, macrophages-HDFs, HBMSCs-HUVECs, osteoblast-osteoclast, macrophages-MSCs, cardiomyocytes/HUVECs, hNSPCs-ECs, | VEGF, bFGF, IL-1α, KGF, VE-cad, Cx43, IL-10, TGF-β, BMP-2, PDGF, |
structural signal | hADSCs-HUVECs, HUVECs-osteoblasts, MSCs-HUVECs, mMSCs-osteoclasts, cardiomyocytes-fibroblasts, DRGs-MPCs, DRGs-ECs, | VEGF, CD31, M-CSF, OPG, RANKL, VEGF-A |
mechanical signal | macrophages-BMMSCs, CMs-CFs, MSCs-fibroblasts, Schwann cells-PC12s | Cx43, TNF-α, NO, IL-10, Arg, VEGF, IGF-1 |
combined signal | HUVECs-HDFs | VEGF, bFGF, Cx43 |
[1] |
R.La.J.P. Vacanti, Science 260 (1993) 920.
DOI URL PMID |
[2] |
F. Berthiaume, T.J. Maguire, M.L. Yarmush, Annual review of chemical and biomolecular engineering 2 (2011) 403-430.
DOI URL |
[3] |
G.D. Nicodemus, S.J. Bryant, Tissue engineering Part B, Reviews 14 (2008) 149-165.
DOI URL PMID |
[4] | B.P. Chan, K.W. Leong, European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society,the European Section of the Cervical Spine Research Society 17 (Suppl 4) (2008) 467-479. |
[5] | Y.M. Thasneem, C. P. Sharma, (2013) 175-205. |
[6] | K.M. Pawelec, A.A. White, S. M. Best, (2019) 65-102. |
[7] |
B.M. Holzapfel, J.C. Reichert, J.T. Schantz, U. Gbureck, L. Rackwitz, U. Noth, F. Jakob, M. Rudert, J. Groll, D.W. Hutmacher, Adv. Drug Delivery Rev. 65 (2013) 581-603.
DOI URL |
[8] |
F. Rosso, G. Marino, A. Giordano, M. Barbarisi, D. Parmeggiani, A. Barbarisi, J. Cell. Physiol. 203 (2005) 465-470.
DOI URL PMID |
[9] |
Y.Z. Wang, D.J. Blasioli, H.J. Kim, H.S. Kim, D.L. Kaplan, Biomaterials 27 (2006) 4434-4442.
DOI URL |
[10] |
S. Kim, S.S. Kim, S.H. Lee, S.E. Ahn, S.J. Gwak, J.H. Song, B.S. Kim, H.M. Chung, Biomaterials 29 (2008) 1043-1053.
DOI URL |
[11] |
S.Y. Schubert, A. Benarroch, J. Ostvang, E.R. Edelman, Arterioscl Throm Vas 28 (2008) 97-104.
DOI URL |
[12] |
M.H. Nam, H.S. Lee, Y. Seomun, Y. Lee, K.W. Lee, Bba-Gen Subjects 1810 (2011) 907-912.
DOI URL |
[13] |
J.M. Sorrell, M.A. Baber, A.I. Caplan, Cells Tissues Organs 186 (2007) 157-168.
DOI URL PMID |
[14] |
F. Wein, A. Bruinink, Integr Biol-Uk 5 (2013) 703-711.
DOI URL |
[15] |
S.B. Traphagen, I. Titushkin, S. Sun, K.K. Wary, M. Cho, J. Tissue Eng. Regener. Med. 7 (2013) 621-630.
DOI URL |
[16] |
K. Nakahama, Cell. Mol. Life Sci. 67 (2010) 4001-4009.
DOI URL |
[17] |
C. Piard, A. Jeyaram, Y. Liu, J. Caccamese, S.M. Jay, Y. Chen, J. Fisher, Biomaterials 222 (2019), 119423.
DOI URL PMID |
[18] |
B.D. Lawrence, J.K. Marchant, M.A. Pindrus, F.G. Omenetto, D.L. Kaplan, Biomaterials 30 (2009) 1299-1308.
DOI URL |
[19] |
H.Y. Li, K. Xue, N. Kong, K. Liu, J. Chang, Biomaterials 35 (2014) 3803-3818.
DOI URL |
[20] |
T.H. Qazi, D.J. Mooney, G.N. Duda, S. Geissler, Biomaterials 140 (2017) 103-114.
DOI URL PMID |
[21] |
T. Okamoto, K. Suzuki, Int. J. Mol. Sci. 18(2017).
DOI URL PMID |
[22] | A. Sachar, T.A. Strom, S. San Miguel, M.J. Serrano, K.K.H. Svoboda, X.H. Liu, J. Tissue Eng.Regener. Med. 8 (2014) 862-873. |
[23] |
M. Grellier, L. Bordenave, J. Amedee, Trends Biotechnol. 27 (2009) 562-571.
DOI URL |
[24] |
R.N.B. Bhandari, L.A. Riccalton, A.L. Lewis, J.R. Fry, A.H. Hammond, S.J. B.Tendler, K.M. Shakesheff, Tissue Eng. 7 (2001) 345-357.
DOI URL PMID |
[25] |
T. Watanabe, D. Sakai, Y. Yamamoto, T. Iwashina, K. Serigano, F. Tamura, J. Mochida, J. Orthop. Res. 28 (2010) 623-630.
DOI URL PMID |
[26] |
T. S. de Windt, D.B.F. Saris, I.C.M. Slaper-Cortenbach, M.H.P. van Rijen, D. Gawlitta, L.B. Creemers, R. A. de Weger, W.J.A. Dhert, L.A. Vonk, Tissue Eng Pt A 21 (2015) 2536-2547.
DOI URL |
[27] |
C.J. Kirkpatrick, S. Fuchs, R.E. Unger, Adv. Drug Delivery Rev. 63 (2011) 291-299.
DOI URL |
[28] |
B. Guillotin, R. Bareille, C. Bourget, L. Bordenave, J. Amedee, Bone 42 (2008) 1080-1091.
DOI URL |
[29] |
M. Kapalczynska, T. Kolenda, W. Przybyla, M. Zajaczkowska, A. Teresiak, V. Filas, M. Ibbs, R. Blizniak, L. Luczewski, K. Lamperska, Arch Med Sci 14 (2018) 910-919.
DOI URL PMID |
[30] |
M.M.J. Caron, P.J. Emans, M.M.E. Coolsen, L. Voss, D.A.M. Surtel, A. Cremers, L. W. van Rhijn, T.J.M. Welting, Osteoarthr Cartilage 20 (2012) 1170-1178.
DOI URL |
[31] | T. Sun, S. Jackson, J.W. Haycock, S. MacNeil, J. Biotechnol. 122 (2006) 372-381. |
[32] |
D.D. Veiga, J.C. Antunes, R.G. Gomez, J.F. Mano, J.L.G. Ribelles, J.M. Soria, J. Biomater. Appl. 26 (2011) 293-310.
DOI URL |
[33] | S. Shah, H. Lee, Y.H. Park, E. Jeon, H.K. Chung, E.S. Lee, J.H. Shim, K.T. Kang, Jove-J Vis Exp (2019). |
[34] |
S. Murakami, H. Ijima, T. Ono, K. Kawakami, Int. J. Artif. Organs 27 (2004) 118-126.
DOI URL PMID |
[35] | S. Stojanovic, S. Najman, Int. J. Mol. Sci. 20(2019). |
[36] |
A.L. Brown, T.T. Brook-Allred, J.E. Waddell, J. White, J.A. Werkmeister, J.A.M. Ramshaw, D.J. Bagli, K.A. Woodhouse, Biomaterials 26 (2005) 529-543.
DOI URL |
[37] |
S.G. Ball, A.C. Shuttleworth, C.M. Kielty, Int J Biochem Cell B 36 (2004) 714-727.
DOI URL |
[38] |
E.J. Levorson, M. Santoro, F.K. Kasper, A.G. Mikos, Acta Biomater. 10 (2014) 1824-1835.
DOI URL PMID |
[39] |
T.Z. Wang, Z.Y. Xu, W.H. Jiang, A.Q. Ma, Int. J. Cardiol. 109 (2006) 74-81.
DOI URL PMID |
[40] |
H. Li, J. Chang, Acta Biomater. 9 (2013) 6981-6991.
DOI URL PMID |
[41] |
N. Bhardwaj, Y.P. Singh, B.B. Mandal, ACS Biomater. Sci. Eng. 5 (2019) 5240-5254.
DOI URL PMID |
[42] |
P. Carpintero-Fernandez, R. Gago-Fuentes, H.Z. Wang, E. Fonseca, J.R. Caeiro, V. Valiunas, P.R. Brink, M.D. Mayan, Bba-Biomembranes 1860 (2018) 2499-2505.
DOI URL PMID |
[43] |
A. Bajetto, A. Pattarozzi, A. Corsaro, F. Barbieri, A. Daga, A. Bosio, M. Gatti, V. Pisaturo, R. Sirito, T. Florio, Front. Cell. Neurosci. 11 (2017) 312.
DOI URL PMID |
[44] |
D.R. Bogdanowicz, H.H. Lu, Biotechnol. J. 8 (2013) 395-396.
DOI URL PMID |
[45] |
J. Wu, Z. Wu, Z.Q. Xue, H.Y. Li, J.B. Liu, RSC Adv. 7 (2017) 22197-22207.
DOI URL |
[46] |
N.U.M. Allah, Z. Berahim, A. Ahmad, T.P. Kannan, Tissue Eng Regen Med 14 (2017) 495-505.
DOI URL PMID |
[47] |
R. Costa-Almeida, M. Gomez-Lazaro, C. Ramalho, P.L. Granja, R. Soares, S.G. Guerreiro, Tissue Eng Pt A 21 (2015) 1055-1065.
DOI URL |
[48] |
S. Ghanaati, S. Fuchs, M.J. Webber, C. Orth, M. Barbeck, M.E. Gomes, R.L. Reis, C.J. Kirkpatrick, J. Tissue Eng. Regener. Med. 5 (2011), E136-E43.
DOI URL |
[49] |
S.D. Eswaramoorthy, N. Dhiman, G. Korra, C.M. Oranges, D.J. Schaefer, S.N. Rath, S. Madduri, Regen Med 14 (2019) 647-661.
DOI URL PMID |
[50] |
A. Hofmann, U. Ritz, S. Verrier, D. Eglin, M. Alini, S. Fuchs, C.J. Kirkpatrick, P.M. Rommens, Biomaterials 29 (2008) 4217-4226.
DOI URL |
[51] |
H.A. Dbouk, R.M. Mroue, M.E. El-Sabban, R.S. Talhouk, Cell Commun Signal 7 (2009) 4.
DOI URL PMID |
[52] |
J.P. Stains, R. Civitelli, Bba-Biomembranes 1719 (2005) 69-81.
DOI URL PMID |
[53] |
F. Villars, B. Guillotin, T. Amedee, S. Dutoya, L. Bordenave, R. Bareille, J. Amedee, Am J Physiol-Cell Ph 282 (2002), C775-C85.
DOI URL |
[54] |
A. Salameh, S. Dhein, Bba-Biomembranes 1828 (2013) 147-156.
DOI URL |
[55] |
X.T. Fan, Y. Teng, Z.Y. Ye, Y. Zhou, W.S. Tan, J. Cell Sci. 131 (2018).
DOI URL PMID |
[56] |
H.Y. Li, J. He, H.F. Yu, C.R. Green, J. Chang, Biomaterials 84 (2016) 64-75.
DOI URL PMID |
[57] |
E. Kizana, S.L. Ginn, C.M. Smyth, A. Boyd, S.P. Thomas, D.G. Allen, D.L. Ross, I.E. Alexander, Gene Ther. 13 (2006) 1611-1615.
DOI URL PMID |
[58] |
H. Dambach, D. Hinkerohe, N. Prochnow, M.N. Stienen, Z. Moinfar, C.G. Haase, A. Hufnagel, P.M. Faustmann, Epilepsia 55 (2014) 184-192.
DOI URL |
[59] |
A. Ratcliffe, Matrix Biol. 19 (2000) 353-357.
DOI URL PMID |
[60] |
S.E. Greenwald, C.L. Berry, J. Pathol. 190 (2000) 292-299.
DOI URL PMID |
[61] |
B. Lee, M. Shafiq, Y. Jung, J.C. Park, S. Kim, Macromol. Res. 24 (2016) 131-142.
DOI URL |
[62] |
P. Uttayarat, A. Perets, M.Y. Li, P. Pimton, S.J. Stachelek, I. Alferiev, R.J. Composto, R.J. Levy, P.I. Lelkes, Acta Biomater. 6 (2010) 4229-4237.
DOI URL PMID |
[63] | A.I. Pangesty, T. Arahira, M. Todo, J Mater Sci-Mater M 28 (2017). |
[64] |
T. Gong, K. Zhao, X. Liu, L.X. Lu, D. Liu, S.B. Zhou, Small 12 (2016) 5769-5778.
DOI URL PMID |
[65] |
D. Liu, T. Xiang, T. Gong, T. Tian, X. Liu, S.B. Zhou, ACS applied materials &interfaces 9 (2017) 19725-19735.
DOI URL PMID |
[66] | F.F. Tu, Y.F. Liu, H.L. Li, P.G. Shi, Y.X. Hao, Y. Wu, H.G. Yi, Y. Yin, J. N. Wang, Polymers-Basel 10 (2018). |
[67] |
V. Leszczak, K.C. Popat, RSC Adv. 4 (2014) 57929-57934.
DOI URL |
[68] |
M. Nasser, Y. Wu, Y. Danaoui, G. Ghosh, Mat Sci Eng C-Mater 102 (2019) 75-84.
DOI URL |
[69] |
M. Arnal-Pastor, C. Martinez-Ramos, A. Valles-Lluch, M.M. Pradas, J. Biomed. Mater. Res. Part A 104 (2016) 1523-1533.
DOI URL |
[70] |
A. Berdichevski, M.A. Birch, A.E. Markaki, Mater. Lett. 248 (2019) 93-96.
DOI URL |
[71] |
T. Tian, Y. Han, B. Ma, C.T. Wu, J. Chang, J. Mater. Chem. B 3 (2015) 6773-6782.
DOI URL PMID |
[72] |
M.G. Tu, Y.W. Chen, M.Y. Shie, J Mater Sci-Mater M 26 (2015) 276.
DOI URL |
[73] | Y.L. Zhang, X. Niu, X. Dong, Y. Wang, H.Y. Li, J. Tissue Eng. Regener. Med. 12 (2018), E1609-E22. |
[74] |
R.M. Day, Tissue Eng. 11 (2005) 768-777.
DOI URL PMID |
[75] | A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Tissue Eng Part B-Re 16 (2010) 199-207. |
[76] | G.H. Nesbitt, Vet Tech 23 (2002) 416-426. |
[77] |
A.A. Tandara, O. Kloeters, J.E. Mogford, T.A. Mustoe, Wound Repair Regen 15 (2007) 497-504.
DOI URL PMID |
[78] |
H.B. Fan, H.F. Liu, S.L. Toh, J.C.H. Goh, Biomaterials 29 (2008) 1017-1027.
DOI URL |
[79] |
R.A. Bader, A.J. Kao, J Biomat Sci-Polym E 20 (2009) 1005-1030.
DOI URL |
[80] |
S.K. Sah, H.Y. Kim, J.H. Lee, S.W. Lee, H.S. Kim, Y.S. Kim, K.S. Kang, T.Y. Kim, Stem cells 35 (2017) 1592-1602.
DOI URL PMID |
[81] | Y.L. Zhou, L. Gao, J.L. Peng, M. Xing, Y. Han, X.Y. Wang, Y.H. Xu, J. Chang, Adv. Healthcare Mater. 7 (2018). |
[82] | P. Nooeaid, W. Li, J.A. Roether, V. Mourino, O.M. Goudouri, D.W. Schubert, A.R. Boccaccini, Biointerphases 9 (2014) 04001. |
[83] |
Y.H. Zhou, S.W. Han, L. Xiao, P.P. Han, S.F. Wang, J. He, J. Chang, C.T. Wu, Y. Xiao, J. Mater. Chem. B 6 (2018) 3274-3284.
DOI URL PMID |
[84] |
X. Dong, J. Chang, H.Y. Li, J. Mater. Chem. B 5 (2017) 5240-5250.
DOI URL PMID |
[85] |
Y.R. Park, H.W. Ju, J.M. Lee, D.K. Kim, O.J. Lee, B.M. Moon, H.J. Park, J.Y. Jeong, Y.K. Yeon, C.H. Park, Int. J. Biol. Macromol. 93 (2016) 1567-1574.
DOI URL PMID |
[86] |
N. Su, P.L. Gao, K. Wang, J.Y. Wang, Y. Zhong, Y. Luo, Biomaterials 141 (2017) 74-85.
DOI URL PMID |
[87] |
Y.C. Xu, J.L. Peng, X. Dong, Y.H. Xu, H.Y. Li, J. Chang, Acta Biomater. 55 (2017) 249-261.
DOI URL PMID |
[88] |
Y.C. Xu, Z. Wu, X. Dong, H.Y. Li, RSC Adv. 7 (2017) 5306-5314.
DOI URL |
[89] |
M.I. Santos, R.E. Unger, R.A. Sousa, R.L. Reis, C.J. Kirkpatrick, Biomaterials 30 (2009) 4407-4415.
DOI URL |
[90] |
M. Grellier, N. Ferreira-Tojais, C. Bourget, R. Bareille, F. Guillemot, J. Amedee, J. Cell. Biochem. 106 (2009) 390-398.
DOI URL PMID |
[91] |
J. Elango, C. Sanchez, J.E.M.S. de Val, Y. Henrotin, S.J. Wang, K.S. C. M. Motaung, R.H. Guo, C.X. Wang, J. Robinson, J.M. Regenstein, B. Bao, W.H. Wu, Sci. Rep. 8 (2018) 5318.
DOI URL PMID |
[92] |
L. Liu, Y.Q. Liu, C. Feng, J. Chang, R.Q. Fu, T.T. Wu, F. Yu, X.T. Wang, L.G. Xia, C.T. Wu, B. Fang, Biomaterials 204 (2019) 82-84.
DOI URL PMID |
[93] | L.Z. Kong, Z. Wu, H.K. Zhao, H.M. Cui, J. Shen, J. Chang, H.Y. Li, Y.H. He, ACSapplied materials & interfaces 10 (2018) 30103-30114. |
[94] |
C.C. Ho, S.C. Huang, C.K. Wei, S.J. Ding, J. Mater. Chem. B 4 (2016) 505-512.
DOI URL PMID |
[95] |
X.X. Dong, H.Y. Li, L.L. E, J.K. Cao, B. Guo, RSC Adv. 9 (2019) 25462-25470.
DOI URL |
[96] | B. Byambaa, N. Annabi, K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, W.T. Jia, M. Kazemzadeh-Narbat, S.R. Shin, A. Tamayol, A. Khademhosseini, Adv. Healthcare Mater. 6 (2017). |
[97] | Y. Deng, C. Jiang, C.D. Li, T. Li, M.Z. Peng, J.W. Wang, K.R. Dai, Sci. Rep. 7(2017). |
[98] |
H.C. Schroder, X.H. Wang, M. Wiens, B. Diehl-Seifert, K. Kropf, U. Schlossmacher, W.E.G. Muller, J. Cell. Biochem. 113 (2012) 3197-3206.
DOI URL |
[99] |
T. Li, Z.L. Liu, M. Xiao, Z.Z. Yang, M.Z. Peng, C.D. Li, X.J. Zhou, J.W. Wang, Stem cell research & therapy 9 (2018) 100.
DOI URL PMID |
[100] | C.Y. Wang, B. Chen, W. Wang, X.C. Zhang, T. Hu, Y.H. He, K.L. Lin, X.D. Liu, Mat Sci Eng C-Mater 103 (2019), 109833. |
[101] |
Y. Huang, C.T. Wu, X.L. Zhang, J. Chang, K.R. Dai, Acta Biomater. 66 (2018) 81-92.
DOI URL PMID |
[102] |
X. Lu, K. Li, Y.T. Xie, S.C. Qi, Q.Y. Shen, J.M. Yu, L.P. Huang, X.B. Zheng, J. Biomed. Mater. Res. Part A 107 (2019) 12-24.
DOI URL |
[103] |
C.T. Wu, Z.T. Chen, Q.J. Wu, D.L. Yi, T. Friis, X.B. Zheng, J. Chang, X.Q. Jiang, Y. Xiao, Biomaterials 71 (2015) 35-47.
DOI URL PMID |
[104] |
M.C. Shi, Z.T. Chen, S. Farnaghi, T. Friis, X.L. Mao, Y. Xiao, C.T. Wu, Acta Biomater. 30 (2016) 334-344.
DOI URL PMID |
[105] |
K. Li, Q.Y. Shen, Y.T. Xie, M.Y. You, L.P. Huang, X.B. Zheng, J. Biomater. Appl. 31 (2017) 1062-1076.
DOI URL PMID |
[106] |
J.M. Sadowska, F. Wei, J. Guo, J. Guillem-Marti, Z.M. Lin, M.P. Ginebra, Y. Xiao, Acta Biomater. 96 (2019) 605-618.
DOI URL PMID |
[107] |
X.F. Ji, X. Yuan, L.M. Ma, B. Bi, H. Zhu, Z.H. Lei, W.B. Liu, H.X. Pu, J.W. Jiang, X.L. Jiang, Y. Zhang, J. Xiao, Theranostics 10 (2020) 725-740.
DOI URL PMID |
[108] |
C. Yang, C.C. Zhao, X.Y. Wang, M.C. Shi, Y.L. Zhu, L.G. Jing, C.T. Wu, J. Chang, Nanoscale 11 (2019) 17699-17708.
DOI URL PMID |
[109] |
M.J. Li, X.L. Fu, H.C. Gao, Y.R. Ji, J. Li, Y.J. Wang, Biomaterials 216 (2019), 119269.
DOI URL PMID |
[110] |
C.B. Horner, M. Maldonado, Y. Tai, R.M.I.K. Rony, J. Nam, ACS applied materials & interfaces (2019).
DOI URL PMID |
[111] | H. Rogan, F. Ilagan, X. Tong, C.R. Chu, F. Yang, Biomaterials 228 (2020), 119579. |
[112] |
X.T. He, R.X. Wu, X.Y. Xu, J. Wang, Y. Yin, F.M. Chen, Acta Biomater. 71 (2018) 132-147.
DOI URL PMID |
[113] | Z. Yang, V. Denslin, Y.N. Wu, E.H. Lee, A.A. Abbas, T. Kamarul, J.H.R. Hui, JBiomater Tiss Eng 7 (2017) 1136-1145. |
[114] |
B. Pena, M. Maldonado, A.J. Bonham, B.A. Aguado, A. Dominguez-Alfaro, M. Laughter, T.J. Rowland, J. Bardill, N.L. Farnsworth, N.A. Ramon, M.R.G. Taylor, K.S. Anseth, M. Prato, R. Shandas, T.A. McKinsey, D. Park, L. Mestroni, ACS applied materials & interfaces 11 (2019) 18671-18680.
DOI URL PMID |
[115] |
K.L. Waldo, C.W. Lo, M.L. Kirby, Dev. Biol. 208 (1999) 307-323.
DOI URL PMID |
[116] |
S. Das, S.W. Kim, Y.J. Choi, S. Lee, S.H. Lee, J.S. Kong, H.J. Park, D.W. Cho, J. Jang, Acta Biomater. 95 (2019) 188-200.
DOI URL PMID |
[117] |
N. Shokraei, S. Asadpour, S. Shokraei, M.N. Sabet, R. Faridi-Majidi, H. Ghanbari, Microsc. Res. Techniq. 82 (2019) 1316-1325.
DOI URL |
[118] |
X.T. Wang, L.Y. Wang, Q. Wu, F. Bao, H.T. Yang, X.Z. Qiu, J. Chang, ACS applied materials & interfaces 11 (2019) 1449-1468.
DOI URL PMID |
[119] |
M. Yi, H.K. Li, X.Y. Wong, J.Y. Yan, L. Gao, Y.Y. He, X.L. Zhong, Y.B. Cai, W.J. Feng, Z.P. Wen, C.T. Wu, C.W. Ou, J. Chang, M.S. Chen, Adv. Sci. 6 (2019), 1801260.
DOI URL |
[120] |
A. Navaei, D. Truong, J. Heffernan, J. Cutts, D. Brafman, R.W. Sirianni, B. Vernon, M. Nikkhah, Acta Biomater. 32 (2016) 10-23.
DOI URL PMID |
[121] |
P.A. Galie, J.P. Stegemann, Cytotherapy 16 (2014) 906-914.
DOI URL |
[122] |
T.L. Hu, Y.B. Wu, X. Zhao, L. Wang, L.Y. Bi, P.X. Ma, B.L. Guo, Chem. Eng. J. 366 (2019) 208-222.
DOI URL |
[123] |
G. C. Ali Hussain, Derek Yip, Cheul H. Cho, Biotechnol. Bioeng. 110 (2012) 637-647.
DOI URL PMID |
[124] | B. Nadarajah, J.G. Parnavelas, Novart Fdn Symp 219 (1999) 157-174. |
[125] |
K. Yang, H.J. Park, S. Han, J. Lee, E. Ko, J. Kim, J.S. Lee, J.H. Yu, K.Y. Song, E. Cheong, S.R. Cho, S. Chung, S.W. Cho, Biomaterials 63 (2015) 177-188.
DOI URL PMID |
[126] |
J. Arulmoli, H.J. Wright, D.T.T. Phan, U. Sheth, R.A. Que, G.A. Botten, M. Keating, E.L. Botvinick, M.M. Pathak, T.I. Zarembinski, D.S. Yanni, O.V. Razorenova, C.C. W. Hughes, L.A. Flanagan, Acta Biomater. 43 (2016) 122-138.
DOI URL PMID |
[127] |
H.R.H. Zupanc, P.G. Alexander, R.S. Tuan, Stem cell research & therapy 8(2017).
DOI URL PMID |
[128] |
U. A. Aregueta-Robles, P.J. Martens, L.A. Poole-Warren, R.A. Green, Acta Biomater. 95 (2019) 269-284.
DOI URL PMID |
[1] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[2] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[3] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[4] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[5] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[6] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[7] | Ruoxian Wang, Gaowu Qin, Erlin Zhang. Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application [J]. J. Mater. Sci. Technol., 2020, 52(0): 127-135. |
[8] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
[9] | Chang-Yang Li, Xiao-Li Fan, Rong-Chang Zeng, Lan-Yue Cui, Shuo-Qi Li, Fen Zhang, Qing-Kun He, M. Bobby Kannan, , Dong-Chu Chen, Shao-Kang Guan. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA [J]. J. Mater. Sci. Technol., 2019, 35(6): 1088-1098. |
[10] | H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev. Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2156-2162. |
[11] | Xingfu Wang, Xinfu Wang, Dan Wang, Modi Zhao, Fusheng Han. A novel approach to fabricate Zn coating on Mg foam through a modified thermal evaporation technique [J]. J. Mater. Sci. Technol., 2018, 34(9): 1558-1563. |
[12] | Kummara Madhusudana Rao, Anuj Kumar, Sung Soo Han. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications [J]. J. Mater. Sci. Technol., 2018, 34(8): 1371-1377. |
[13] | Cui Lan-Yue, Hu Yan, Zeng Rong-Chang, Yang Yong-Xin, Sun Dan-Dan, Li Shuo-Qi, Zhang Fen, Han En-Hou. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions [J]. J. Mater. Sci. Technol., 2017, 33(9): 971-988. |
[14] | Zhen Zhen, Zheng Yufeng, Ge Zigang, Lai Chen, Xi Tingfei. Biological effect and molecular mechanism study of biomaterials based on proteomic research [J]. J. Mater. Sci. Technol., 2017, 33(7): 607-615. |
[15] | Ma Junxuan,Zhou Zhiyu,Gao Manman,Yu Binsheng,Xiao Deming,Zou Xuenong,Bünger Cody. Biosynthesis of Bioadaptive Materials: A Review on Developing Materials Available for Tissue Adaptation [J]. J. Mater. Sci. Technol., 2016, 32(9): 810-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||