J. Mater. Sci. Technol. ›› 2020, Vol. 50: 66-74.DOI: 10.1016/j.jmst.2020.02.013
• Research Article • Previous Articles Next Articles
Zhi Yanga,b, Jian Lia, Xiaojing Xuc, Shengyang Panga, Chenglong Hua, Penglei Guoa,b, Sufang Tanga,*(), Hui-Ming Chenga
Received:
2019-12-06
Revised:
2020-02-02
Accepted:
2020-02-03
Published:
2020-08-01
Online:
2020-08-10
Contact:
Sufang Tang
Zhi Yang, Jian Li, Xiaojing Xu, Shengyang Pang, Chenglong Hu, Penglei Guo, Sufang Tang, Hui-Ming Cheng. Synthesis of monolithic carbon aerogels with high mechanical strength via ambient pressure drying without solvent exchange[J]. J. Mater. Sci. Technol., 2020, 50: 66-74.
Samples | R/C | W/R | Tgel (°C) | DS (%) | ρOA (g/cm3) | CS (%) | ρCA (g/cm3) | σCA (MPa) | ECA (MPa) |
---|---|---|---|---|---|---|---|---|---|
A1 | 300 | 17 | 30 | 29.21 | 0.92 | 23.14 | 1.13 | 126.8 | 1981.3 |
A2 | 500 | 17 | 30 | 22.93 | 0.71 | 19.87 | 0.80 | 84.3 | 1170.8 |
A3 | 1000 | 17 | 30 | 15.94 | 0.49 | 18.92 | 0.54 | 27.1 | 451.7 |
A4 | 1500 | 17 | 30 | 6.54 | 0.38 | 17.75 | 0.37 | 10.8 | 156.5 |
A5 | 2000 | 17 | 30 | 3.48 | 0.31 | 17.39 | 0.30 | 6.5 | 135.4 |
B1 | 300 | 24 | 30 | 35.73 | 0.96 | 23.63 | 1.12 | 147.4 | 2076.1 |
B2 | 500 | 24 | 30 | 30.15 | 0.73 | 20.55 | 0.82 | 124.4 | 1574.7 |
B3 | 1000 | 24 | 30 | 22.16 | 0.49 | 18.04 | 0.51 | 39.6 | 545.7 |
B4 | 1500 | 24 | 30 | 13.70 | 0.37 | 17.64 | 0.36 | 8.9 | 120.3 |
B5 | 2000 | 24 | 30 | - | - | - | - | - | - |
C1/A5 | 2000 | 17 | 30 | 3.48 | 0.31 | 17.39 | 0.30 | 6.5 | 135.4 |
C2 | 2000 | 17 | 45 | 8.92 | 0.42 | 19.08 | 0.40 | 11.5 | 169.4 |
C3 | 2000 | 17 | 60 | 10.63 | 0.43 | 18.94 | 0.42 | 21.4 | 270.6 |
C4 | 2000 | 17 | 75 | 11.86 | 0.44 | 18.17 | 0.46 | 29.1 | 323.8 |
C5 | 2000 | 17 | 90 | 14.92 | 0.46 | 17.64 | 0.47 | 38.2 | 502.6 |
C3* | 2000 | 17 | 60 | 10.35 | 0.41 | 18.35 | 0.42 | 22.3 | 258.7 |
C5* | 2000 | 17 | 90 | 14.18 | 0.47 | 16.63 | 0.45 | 35.4 | 481.9 |
Table 1 Synthesis parameters and properties of OAs and CAs.
Samples | R/C | W/R | Tgel (°C) | DS (%) | ρOA (g/cm3) | CS (%) | ρCA (g/cm3) | σCA (MPa) | ECA (MPa) |
---|---|---|---|---|---|---|---|---|---|
A1 | 300 | 17 | 30 | 29.21 | 0.92 | 23.14 | 1.13 | 126.8 | 1981.3 |
A2 | 500 | 17 | 30 | 22.93 | 0.71 | 19.87 | 0.80 | 84.3 | 1170.8 |
A3 | 1000 | 17 | 30 | 15.94 | 0.49 | 18.92 | 0.54 | 27.1 | 451.7 |
A4 | 1500 | 17 | 30 | 6.54 | 0.38 | 17.75 | 0.37 | 10.8 | 156.5 |
A5 | 2000 | 17 | 30 | 3.48 | 0.31 | 17.39 | 0.30 | 6.5 | 135.4 |
B1 | 300 | 24 | 30 | 35.73 | 0.96 | 23.63 | 1.12 | 147.4 | 2076.1 |
B2 | 500 | 24 | 30 | 30.15 | 0.73 | 20.55 | 0.82 | 124.4 | 1574.7 |
B3 | 1000 | 24 | 30 | 22.16 | 0.49 | 18.04 | 0.51 | 39.6 | 545.7 |
B4 | 1500 | 24 | 30 | 13.70 | 0.37 | 17.64 | 0.36 | 8.9 | 120.3 |
B5 | 2000 | 24 | 30 | - | - | - | - | - | - |
C1/A5 | 2000 | 17 | 30 | 3.48 | 0.31 | 17.39 | 0.30 | 6.5 | 135.4 |
C2 | 2000 | 17 | 45 | 8.92 | 0.42 | 19.08 | 0.40 | 11.5 | 169.4 |
C3 | 2000 | 17 | 60 | 10.63 | 0.43 | 18.94 | 0.42 | 21.4 | 270.6 |
C4 | 2000 | 17 | 75 | 11.86 | 0.44 | 18.17 | 0.46 | 29.1 | 323.8 |
C5 | 2000 | 17 | 90 | 14.92 | 0.46 | 17.64 | 0.47 | 38.2 | 502.6 |
C3* | 2000 | 17 | 60 | 10.35 | 0.41 | 18.35 | 0.42 | 22.3 | 258.7 |
C5* | 2000 | 17 | 90 | 14.18 | 0.47 | 16.63 | 0.45 | 35.4 | 481.9 |
Samples | SBET (m2/g) | Smic (m2/g) | Smes (m2/g) | Vpore (cm3/g) | Vmic (cm3/g) |
---|---|---|---|---|---|
CAs-A1 | 465 | 382 | 83 | 0.31 | 0.17 |
CAs-A2 | 616 | 350 | 266 | 0.77 | 0.16 |
CAs-A3 | 589 | 395 | 194 | 1.14 | 0.18 |
CAs-A4 | 555 | 436 | 119 | 0.52 | 0.20 |
CAs-A5 | 558 | 476 | 82 | 0.44 | 0.22 |
Table 2 Porosity parameters of CAs-A1~A5.
Samples | SBET (m2/g) | Smic (m2/g) | Smes (m2/g) | Vpore (cm3/g) | Vmic (cm3/g) |
---|---|---|---|---|---|
CAs-A1 | 465 | 382 | 83 | 0.31 | 0.17 |
CAs-A2 | 616 | 350 | 266 | 0.77 | 0.16 |
CAs-A3 | 589 | 395 | 194 | 1.14 | 0.18 |
CAs-A4 | 555 | 436 | 119 | 0.52 | 0.20 |
CAs-A5 | 558 | 476 | 82 | 0.44 | 0.22 |
Fig. 7. SEM images of CAs-C1-C5 with different gelation temperatures: (a) Tgel?=?30?°C; (b) Tgel?=?45?°C; (c) Tgel?=?60?°C; (d) Tgel?=?75?°C; (e) Tgel?=?90?°C.
[1] | R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn, J. Non-Cryst. Solids 225 (1998) 74-80. |
[2] |
J. Zheng, J.L. Huang, F. Xu, F. Zhu, D.C. Wu, G.F. Yang, Nanoscale 9 (2017) 5545-5550.
DOI URL PMID |
[3] | S. Singh, A. Bhatnagar, V. Dixit, V. Shukla, M.A. Shaz, A.S.K. Sinha, V. Sekkar, Int. J. Hydrogen Energy 41 (2016) 3561-3570. |
[4] | C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon 43 (2005) 455-465. |
[5] |
P. Katanyoota, T. Chaisuwan, A. Wongchaisuwat, S. Wongkasemjit, Mater. Sci. Eng. B 167 (2010) 36-42.
DOI URL |
[6] | J.Z. Feng, J. Feng, C.R. Zhang, J. Porous. Mater. 19 2011 551-556. |
[7] | M. Wiener, G. Reichenauer, S. Braxmeier, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 30 2009 1372-1385. |
[8] | M. Wiener, G. Reichenauer, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 27 2006 1826-1843. |
[9] | R.W. Fu, B. Zheng, J. Liu, S. Weiss, J.Y. Ying, M.S. Dresselhaus, T.F. Baumann, J. Mater. Res. 18 2003 2765-2773. |
[10] | Y. Zhong, Y. Kong, X.D. Shen, S. Cui, X.B. Yi, J.J. Zhang, Microporous Mesoporous Mater. 172 2013 182-189. |
[11] | X.F. Jia, B.W. Dai, Z.X. Zhu, J.T. Wang, W.M. Qiao, D.H. Long, L. Ling, Carbon 108 (2016) 551-560. |
[12] | J. Yang, S.K. Li, Y.M. Luo, L.L. Yan, F.C. Wang, Carbon 49 (2011) 1542-1549. |
[13] | D.C. Wu, R.W. Fu, S.T. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42 (2004) 2033-2039. |
[14] | J. Li, X.Y. Wang, Y. Wang, Q.H. Huang, C.L. Dai, S. Gamboa, P.J. Sebastian, J. Non-Cryst. Solids 354 (2008) 19-24. |
[15] | Y.D. Zhu, H.Q. Hu, W.C. Li, H.X. Zhao, J. Non-Cryst. Solids 352 (2006) 3358-3362. |
[16] | M.L. Rojas-Cervantes, J.Mater. Sci. 50 2014 1017-1040. |
[17] | J. Xu, X.Y. Zhou, M.Z. Chen, S.K. Shi, Y.Z. Cao, Microporous Mesoporous Mater. 265 2018 258-265. |
[18] | Y.J. Lee, J.C. Jung, J. Yi, S.H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys. 10 2010 682-686. |
[19] | G.T. Qin, S.C. Guo, Carbon 39 (2001) 1935-1937. |
[20] | G.T. Qin, S.C. Guo, Carbon 37 (1999) 1168-1169. |
[21] | K.T. Lee, S.M. Oh, Chem. Commun. 22 2002 2722-2723. |
[22] | D.C. Wu, R.W. Fu, J. Porous Mat. 15 2008 29-34. |
[23] | D.C. Wu, R.W. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44 (2006) 675-681. |
[24] | R.W. Fu, B. Zheng, J.J. Liu, M.S. Dresselhaus, Adv. Funct. Mater. 13 2010 558-562. |
[25] | J. Feng, C. Zhang, J. Feng, Mater. Lett. 67 2012 266-268. |
[26] | H.M. Cheng, H.F. Xue, C.X. Hong, X.H. Zhang, Compos. Sci. Technol. 140 2017 63-72. |
[27] | K. Guo, Z.J. Hu, H.H. Song, X. Du, L. Zhong, X.H. Chen, RSC Adv. 5 2014 5197-5204. |
[28] | G.P. Wu, J.B. Yang, D.P. Wang, R. Xu, K. Amine, C.X. Lu, Mater. Lett. 115 2014 1-4. |
[29] | J.Z. Feng, C.R. Zhang, J. Feng, Y.G. Jiang, N. Zhao, ACS Appl. Mater. Interface 3 (2011) 4796-4803. |
[30] | J.L. Kaschmitter, S.T. Mayer, R.W. Pekala, U.S.Patent No. 5,420,168, 1995. |
[31] | R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, J. Fricke, J. Non-Cryst. Solids 221 (1997) 144-150. |
[32] | C.A. Lin, J.A. Ritter, Carbon 38 (2000) 849-861. |
[33] | D.C. Wu, R.W. Fu, Z.Q. Sun, Z.Q. Yu, J. Non-Cryst, Solids 351 (2005) 915-921. |
[34] | T.I. Williams, Handbook of Chemistry and Physics, 70th Ed., 1990. |
[35] | L.G. Joyner, E.P. Barrett, R. Skold, J. Am. Chem. Soc. 73 1951 373-380. |
[36] | S.J. Gregg, K.S.W. Sing, H.W. Salzberg, J. Electrochem. Soc. 114 (1967) 279C. |
[37] | B.C. Lippens, J.H. De Boer, J.Catal. 4 1965 319-323. |
[38] | N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud, J.P. Pirard, Carbon 43 (2005) 2481-2494. |
[39] | A. Abdelwahab, J. Castelo-Quibén, M. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, A.F. Pérez-Cadenas, Carbon 139 (2018) 888-895. |
[40] | N. Liu, S.T. Zhang, R.W. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44 (2006) 2430-2436. |
[41] | Z.J. Xu, B.Z. Xia, W.Y. Wang, T. Ji, C. Ma, L.H. Gan, Carbon 49 (2011) 3385-3387. |
[42] |
M. Alshrah, M.P. Tran, P.J. Gong, H.E. Naguib, C.B. Park, J. Colloid Interface Sci. 485 2017 65-74.
DOI URL PMID |
[43] |
R.W. Pekala, C.T. Alviso, J.D. LeMay, J. Non-Cryst. Solids 125 (1990) 67-75.
DOI URL |
[44] |
X. Wang, S.C. Jana, Langmuir 29 (2013) 5589-5598.
DOI URL PMID |
[45] |
A.M. Elkhatat, S.A. Al-Muhtaseb, Adv. Mater. 23 2011 2887-2903.
DOI URL |
[46] | M. Aghabararpour, M. Mohsenpour, S. Motahari, A. Abolghasemiet, J. Non-Cryst. Solids 481 (2018) 548-555. |
[47] | X. Lu, R. Caps, J. Fricke, C.T. Alviso, R.W. Pekala, J. Non-Cryst. Solids 188 (1995) 226-234. |
[1] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[2] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
[3] | Jun SHEN, Zhihua ZHANG, Guangming WU, Bin ZHOU, Xingyuan NI, Jue WANG. Preparation and Characterization of Silica Aerogels Derived from Ambient Pressure [J]. J Mater Sci Technol, 2006, 22(06): 798-802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||