J. Mater. Sci. Technol. ›› 2021, Vol. 65: 18-28.DOI: 10.1016/j.jmst.2020.04.083
• Research Article • Previous Articles Next Articles
Jinlong Du, Cai Li, Zumin Wang*(), Yuan Huang*(
)
Received:
2020-02-22
Revised:
2020-04-03
Accepted:
2020-04-07
Published:
2021-02-28
Online:
2021-03-15
Contact:
Zumin Wang,Yuan Huang
About author:
yi_huangyuan@tju.edu.cn(Y. Huang).Jinlong Du, Cai Li, Zumin Wang, Yuan Huang. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism[J]. J. Mater. Sci. Technol., 2021, 65: 18-28.
Fig. 1. Schematic diagram of temperature varying with time during the direct alloying carried out through a direct diffusion bonding for Mo and Ag rods.
Parameters | ${{V}^{2/3}}$(cm2) | $n_{ws}^{1/3}$ ((d.u.)1/3) | ϕ (V) | γ | E (GPa) | K (GPa) | G (GPa) | ${{S}^{f}}$ (105 m2) | ${{\gamma }^{S,0}}$(mJ/m2) | ρ (g/cm3) | M (g/mol) | Tm (K) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mo | 4.45 | 1.77 | 4.65 | 0.324 | 330 | 313 | 125 | 1.67 | 3000 | 10.20 | 95.94 | 2893 |
Ag | 4.72 | 1.36 | 4.35 | 0.38 | 82 | 114 | 30 | 2.03 | 1250 | 10.49 | 107.87 | 1235 |
Table 1 Parameters used in thermodynamic calculation of Mo-Ag system [27].
Parameters | ${{V}^{2/3}}$(cm2) | $n_{ws}^{1/3}$ ((d.u.)1/3) | ϕ (V) | γ | E (GPa) | K (GPa) | G (GPa) | ${{S}^{f}}$ (105 m2) | ${{\gamma }^{S,0}}$(mJ/m2) | ρ (g/cm3) | M (g/mol) | Tm (K) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mo | 4.45 | 1.77 | 4.65 | 0.324 | 330 | 313 | 125 | 1.67 | 3000 | 10.20 | 95.94 | 2893 |
Ag | 4.72 | 1.36 | 4.35 | 0.38 | 82 | 114 | 30 | 2.03 | 1250 | 10.49 | 107.87 | 1235 |
Fig. 3. Interfacial microstructure characterization results of the of Mo-Ag joint prepared at 950 °C for 180 min under 100 MPa: (a) the high-angle annular dark-field (HAADF) image of Mo-Ag interface, (b) and (c) element mapping of Mo and Ag, respectively; (d) HRTEM images of as-constructed Mo-Ag interface and (e) the corresponding SAED pattern.
Fig. 4. Microstructure characterization results of the Mo50Ag50 sintered powder materials: (a) and (c) HRTEM images of the powders milled for 40 h and 60 h, (b) and (d) the corresponding SAED pattern, respectively.
Fig. 5. The effect of (a) bonding temperature with 180 min and 100 MPa, (b) bonding time with 950 °C and 100 MPa and (c) bonding pressure with 950 °C and 180 min on the tensile strength of the Mo-Ag joints.
Fig. 6. (a) SEM image of the tensile fracture surface of the Mo-Ag joint prepared at 950 °C for 180 min and (b) EDS results of the region marked with a white rectangle in (a).
Fig. 8. DSC test curves of Mo50Ag50 powder mixtures. There are two kinds of test specimens: one is the Mo50Ag50 powder mixture that is just milled for 60 h, the other is the Mo50Ag50 powder mixture that is milled for 60 h firstly and then annealed at 960 °C for 3 h.
[1] |
F. Findik, H. Uzun, Mater. Des. 24 (2003) 489-492.
DOI URL |
[2] |
Y. Huang, D.Y. Kong, F. He, Y.L. Wang, W.X. Liu, Acta Metall. Sin. 48 (2012) 1253-1259.
DOI URL |
[3] | M. Madej, Arch. Metall. Mater. 57 (2012) 605-612. |
[4] |
S. Packirisamy, D. Schwam, M.H. Litt, J. Mater. Sci. 30 (1995) 308-320.
DOI URL |
[5] |
M.R. Reddy, J. Mater. Sci. 30 (1995) 281-307.
DOI URL |
[6] |
J.L. Du, X.Y. Chen, X.G. Jia, Y. Huang, Z.M. Wang, Y.C. Liu, Mater. Sci. Eng. A 743(2019) 675-683.
DOI URL |
[7] |
I.L. Harris, A.R. Chambers, G.T. Roberts, Mater. Lett. 31 (1997) 321-328.
DOI URL |
[8] |
P. Kannan, K. Balamurugan, K. Thirunavukkarasu, Int. J. Adv. Manuf. Tech. 81 (2015) 1743-1756.
DOI URL |
[9] |
F.C. Nix, D. Macnair, Phys. Rev. B 61 (1942) 74-78.
DOI URL |
[10] |
E. Ma, Prog. Mater. Sci. 50 (2005) 413-509.
DOI URL |
[11] | G. D’Accolti, G. Beltrame, E. Ferrando, L. Brambilla, R. Contini, L. Vallini, R. Mugnuolo, C. Signorini, H. Fiebrich, A. Caon, ESA Bull. 502 (2002) 445. |
[12] |
F.T.N. Vüllers, R. Spolenak, Acta Mater. 99 (2015) 213-227.
DOI URL |
[13] | K. Sarakinos, G. Greczynski, V. Elofsson, D. Magnfält, H. Högberg, B. Alling, J. Appl. Phys. 119 (2016) 379. |
[14] |
V. Elofsson, G. Almyras, B. Lü, R. Boyd, K. Sarakinos, Acta Mater. 110 (2016) 114-121.
DOI URL |
[15] |
R. Banerjee, A. Puthucode, S. Bose, P. Ayyub, Appl. Phys. Lett. 90 (2) (2007), 021904.
DOI URL |
[16] |
T.L. Wang, J.H. Li, K.P. Tai, B.X. Liu, Scr. Mater. 57 (2007) 157-160.
DOI URL |
[17] | X. Bai, T.L. Wang, N. Ding, J.H. Li, B.X. Liu, J. Appl. Phys. 108 (2010) 7069. |
[18] |
T.L. Wang, J.H. Li, K.P. Tai, B.X. Liu, Scr. Mater. 57 (2007) 157-160.
DOI URL |
[19] |
N. Al-Aqeeli, M.A. Hussein, C. Suryanarayana, Adv. Powder Technol. 26 (2015) 385-391.
DOI URL |
[20] | B.C. Hornbuckle, T. Rojhirunsakool, M. Rajagopalan, T. Alam, G.P. Purja Pun, R. Banerjee, K.N. Solanki, Y. Mishin, L.J. Kecskes, K.A. Darling, JOM 67 (2015) 2802-2809. |
[21] | R. Lei, M.P. Wang, H.P. Wang, S.Q. Xu, Mater. Charact. 118 (2016) 324-331. |
[22] |
J.Z. Jiang, C. Gente, R. Bormann, Mater. Sci. Eng. A 242 (1998) 268-277.
DOI URL |
[23] |
N. Al-Aqeeli, M. Hussein, C. Suryanarayana, Adv. Powder Technol. 26 (2015) 385-391.
DOI URL |
[24] |
J.L. Du, Y. Huang, J.W. Liu, Y.C. Liu, Z.M. Wang, Mater. Des. 170 (2019), 107699.
DOI URL |
[25] |
L.T. Li, J. Zhang, X.C. Pan, Y. Huang, Z.M. Wang, Y.C. Liu, RSC Adv. 7 (2017) 53763-53769.
DOI URL |
[26] | H. Li, C. Wu, Shanghai Metals 33 (2011) 1-5. |
[27] | F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1989. |
[28] |
L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, Surf. Sci. 411 (1998) 186-202.
DOI URL |
[29] |
J. Zhang, Y. Huang, Y.C. Liu, Z.M. Wang, Mater. Des. 137 (2018) 473-480.
DOI URL |
[30] |
X.C. Pan, J. Zhang, Y. Huang, Y.C. Liu, J. Alloys Compd. 723 (2017) 1053-1061.
DOI URL |
[31] |
R.F. Zhang, Y.X. Shen, H.F. Yan, B.X. Liu, J. Phys. Chem. B 109 (2005) 4391-4397.
DOI URL PMID |
[32] |
B.X. Liu, W.S. Lai, Z.J. Zhang, Adv. Phys. 50 (2001) 367-429.
DOI URL |
[33] |
K.P. Tai, X.D. Dai, Y.X. Shen, B.X. Liu, J. Phys. Chem. B 110 (2006) 595-606.
DOI URL PMID |
[34] |
J. Zhang, Y. Huang, Z.M. Wang, Y.C. Liu, J. Alloys Compd. 774 (2019) 939-947.
DOI URL |
[35] | A.R. Miedema, A.K. Niessen, T. Calphad 7 (1983) 27-36. |
[36] |
J.M. López, J.A. Alonso, Z. Naturforsch. A 40 (1985) 1199-1205.
DOI URL |
[37] |
S. Sheibani, S. Heshmati-Manesh, A. Ataie, J. Alloys Compd. 495 (2010) 59-62.
DOI URL |
[38] |
Z.J. Zhang, O. Jin, B.X. Liu, Phys. Rev. B 51 (1995) 8076-8085.
DOI URL |
[39] | A.K. Niessen, A.R. Miedema, F.R. de Boer, R. Boom, Phys. B+C 151 (1988) 401-432. |
[40] |
C.Q. Sun, Prog. Mater. Sci. 54 (2009) 179-307.
DOI URL |
[41] |
M. Methfessel, D. Hennig, M. Scheffler, Phys. Rev. B 46 (1992) 4816-4829.
DOI URL |
[42] |
A. Bachmaier, M. Kerber, D. Setman, R. Pippan, Acta Mater. 60 (2012) 860-871.
DOI URL |
[43] |
B.Y. Tsaur, J.W. Mayer, Appl. Phys. Lett. 37 (1980) 389-392.
DOI URL |
[44] |
D. Dumchenko, C. Gherman, L. Kulyuk, E. Fortin, E. Bucher, Thin Solid Films 495 (2006) 82-85.
DOI URL |
[45] |
I.M. Khan, H.Y. Kim, T. Nam, S. Miyazaki, J. Alloys Compd. 577 (2013) S383-S387.
DOI URL |
[46] |
K.S. Suresh, A.D. Rollett, S. Suwas, Metall. Mater. Trans. A 44 (8) (2013) 3866-3881.
DOI URL |
[47] |
P. Gerber, J. Tarasiuk, T. Chauveau, B. Bacroix, Acta Mater. 51 (2003) 6359-6371.
DOI URL |
[48] |
M. Spanl, A. Korner, W. Pfeiler, W. Püschla, Scr. Mater. 41 (1999) 505-510.
DOI URL |
[49] |
K.S. Vecchio, R.W. Hertzberg, J. Mater. Sci. 23 (1988) 2220-2224.
DOI URL |
[50] | F. Wang, J. Liu, J.M. Zhang, M. Xie, L.I. Aikun, S. Wang, Precious Met. 39 (2018) 43-49. |
[51] |
L. Kator, P. Nyulas, Strength Mater. 3 (1971) 28-31.
DOI URL |
[52] | S. Kobayashi, S. Zaefferer, A. Schneider, D. Raabe, G. Frommeyer, Mater. Sci.Forum 467-470 (2004) 153-158. |
[53] |
X. He, S.H. Liang, J.H. Li, B.X. Liu, Phys. Rev. B 75 (2007), 045431.
DOI URL |
[54] |
R.F. Zhang, L.T. Kong, H.R. Gong, B.X. Liu, J. Phys.: Condens. Matter 16 (2004) 5251.
DOI URL |
[55] |
X.D. Dai, J.H. Li, H.B. Guo, B.X. Liu, J. Appl. Phys. 101 (2007), 063512.
DOI URL |
[56] | X. Bai, T.L. Wang, N. Ding, J.H. Li, Bx Liu, J. Appl. Phys. 108 (2010), 073534. 28 |
[1] | Zhongwei Wang, Yu Yan, Yang Wang, Yanjing Su, Lijie Qiao. Lifecycle of cobalt-based alloy for artificial joints: From bulk material to nanoparticles and ions due to bio-tribocorrosion [J]. J. Mater. Sci. Technol., 2020, 46(0): 98-106. |
[2] | Ahmed Elmarakbi, Panagiotis Karagiannidis, Alessandra Ciappa, Franco Innocente, Francesco Galise, Brunetto Martorana, Francesco Bertocchi, Francesco Cristiano, Elvira Villaro ábalos, Julio Gómez. 3-Phase hierarchical graphene-based epoxy nanocomposite laminates for automotive applications [J]. J. Mater. Sci. Technol., 2019, 35(10): 2169-2177. |
[3] | Jinlong Du, Yuan Huang, Chan Xiao, Yongchang Liu. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA) [J]. J. Mater. Sci. Technol., 2018, 34(4): 689-694. |
[4] | Chao Cheng, Bingbing Yu, Zhiyong Chen, Jianrong Liu, . Mechanical properties of electron beam welded dissimilar joints of TC17 and Ti60 alloys [J]. J. Mater. Sci. Technol., 2018, 34(10): 1859-1866. |
[5] | Alessandro Barbini, Jan Carstensen, Jorge F. dos Santos. Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024/AA7050 FSW joints [J]. J. Mater. Sci. Technol., 2018, 34(1): 119-127. |
[6] | Thom? Marco, Guntram Wagner, Stra? Benjamin, Bernd Wolter, Sigrid Benfer, Wolfram Fürbeth. Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints [J]. J. Mater. Sci. Technol., 2018, 34(1): 163-172. |
[7] | Di Hongshuang, Sun Qian, Wang Xiaonan, Li Jianping. Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding [J]. J. Mater. Sci. Technol., 2017, 33(12): 1561-1571. |
[8] | Bo Chen, Huaping Xiong, Yaoyong Cheng, Wei Mao, Shibiao Wu. Microstructure and Property of AlN Joint Brazed with Au-Pd-Co-Ni-V Brazing Filler [J]. J. Mater. Sci. Technol., 2015, 31(10): 1034-1038. |
[9] | S. Babu, G.D. Janaki Ram, P.V. Venkitakrishnan, G. Madhusudhan Reddy, K. Prasad Rao. Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014 [J]. J Mater Sci Technol, 2012, 28(5): 414-426. |
[10] | Peng HE, Jicai FENG, Heng ZHOU. Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with Cu-P Filler Metal [J]. J Mater Sci Technol, 2005, 21(04): 493-498. |
[11] | Lixing HUO, Furong CHEN, Yufeng ZHANG, Li ZHANG, Fangjun LIU, Gang CHEN. Effect of Post-weld Heat Treatment on Microstructure and Fracture Toughness of 30CrMnSiNi2A Steel Welded Joints [J]. J Mater Sci Technol, 2003, 19(05): 483-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||