J. Mater. Sci. Technol. ›› 2021, Vol. 65: 29-37.DOI: 10.1016/j.jmst.2020.03.083
• Research Article • Previous Articles Next Articles
Bo Gaoa, Rong Hub, Zhiyi Pana, Xuefei Chenc,d, Yi Liua, Lirong Xiaoa, Yang Caoa, Yusheng Lia, Qingquan Laib,*(), Hao Zhoua,*(
)
Received:
2020-01-20
Revised:
2020-03-15
Accepted:
2020-03-19
Published:
2021-02-28
Online:
2021-03-15
Contact:
Qingquan Lai,Hao Zhou
About author:
hzhou511@njust.edu.cn (H. Zhou).1The authors contributed equally to this work.
Bo Gao, Rong Hu, Zhiyi Pan, Xuefei Chen, Yi Liu, Lirong Xiao, Yang Cao, Yusheng Li, Qingquan Lai, Hao Zhou. Strengthening and ductilization of laminate dual-phase steels with high martensite content[J]. J. Mater. Sci. Technol., 2021, 65: 29-37.
Fig. 3. SEM images of intercritical annealed DP steels: (a-1, a-2, a-3) the 40 % warm-rolled samples annealed at 780 °C, 800 °C and 840 °C, respectively; (b-1, b-2, b-3) the 60 % warm-rolled samples annealed at 780 °C, 800 °C and 840 °C, respectively.
Fig. 7. Effect of rolling strain and annealing temperature on the mechanical behaviors of DP steels. Engineering stress-strain curves of the samples with (a) 40 % rolling reduction and (b) 60 % rolling reduction. (c) Evolution of YS, UTS and UE at different annealing temperatures and (d) strain hardening rate curves from tensile tests.
Thickness reduction | Temperature (°C) | YS (MPa) | UTS (MPa) | UE (%) |
---|---|---|---|---|
40 % | 780 | 677 | 1183 | 8.6 |
800 | 776 | 1342 | 8.0 | |
840 | 1109 | 1559 | 7.1 | |
60 % | 780 | 831 | 1361 | 8.4 |
800 | 1017 | 1485 | 6.9 | |
840 | 1349 | 1648 | 4.6 |
Table 1 Tensile properties of the warm rolled DP steels annealed at 780 °C, 800 °C and 840 °C.
Thickness reduction | Temperature (°C) | YS (MPa) | UTS (MPa) | UE (%) |
---|---|---|---|---|
40 % | 780 | 677 | 1183 | 8.6 |
800 | 776 | 1342 | 8.0 | |
840 | 1109 | 1559 | 7.1 | |
60 % | 780 | 831 | 1361 | 8.4 |
800 | 1017 | 1485 | 6.9 | |
840 | 1349 | 1648 | 4.6 |
Fig. 8. LUR tensile tests: (a) the load-unload-reload curves of dual phase steels. (b) Schematic of hysteresis loops for characterizing the Bauschinger effect. (c) Evolution of HDI stress with applied strain. (d) Load-unload curves (hysteresis loops) and the hysteresis areas of HMDP steels varying with true strain. The loops have been shifted in strain for comparison.
Fig. 9. TEM micrographs of 60 %-780 DP and 40 %-840 DP after tensile strain of 6%: (a-1) dislocations in ferrite of 60 %-780 DP; (a-2) enlarged image of the selected area in (a-1); (b-1) dislocations in ferrite of 40 %-840 DP; (b-2) enlarged image of the selected area in (b-1).
[1] |
Q. Lai, L. Brassart, O. Bouaziz, M. Gouné, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, T. Pardoen, Int. J. Plast. 80 (2016) 187-203.
DOI URL |
[2] |
D. Gerbig, A. Srivastava, S. Osovski, L.G. Hector, A. Bower, Int. J. Fract. Mech. 209 (2018) 3-26.
DOI URL |
[3] |
M.X. Huang, B.B. He, J. Mater. Sci. Technol. 34 (2018) 417-420.
DOI URL |
[4] |
H. Mirzadeh, M. Alibeyki, M. Najafi, Metall. Mater. Trans. A 48 (2017) 4565-4573.
DOI URL |
[5] |
F. Zhang, A. Ruimi, P.C. Wo, D.P. Field, Mater. Sci. Eng. A 659 (2016) 93-103.
DOI URL |
[6] |
H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, Mater. Sci. Eng. A 680 (2017) 197-202.
DOI URL |
[7] |
Y. Cao, Y.B. Wang, X.H. An, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Acta Mater. 63 (2014) 16-29.
DOI URL |
[8] |
Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou, Scr. Mater. 159 (2019) 137-141.
DOI URL |
[9] |
W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, H. Zhou, Mater. Sci. Eng. A 540 (2012) 115-122.
DOI URL |
[10] |
C. Haase, O. Kremer, W. Hu, T. Ingendahl, R. Lapovok, D.A. Molodov, Acta Mater. 107 (2016) 239-253.
DOI URL |
[11] |
X.L. Ma, H. Zhou, J. Narayan, Y.T. Zhu, Scr. Mater. 109 (2015) 89-93.
DOI URL |
[12] |
X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 7197-7201.
DOI URL PMID |
[13] | L.X. Sun, N.R. Tao, M. Kuntz, J.Q. Yu, K. Lu, J. Mater, Sci. Technol. 30 (2014) 731-735. |
[14] |
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 14501-14505.
DOI URL PMID |
[15] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[16] |
H. Zhou, C. Huang, X. Sha, L. Xiao, X. Ma, H.W. Höppel, M. Göken, X. Wu, K. Ameyama, X. Han, Y. Zhu, Mater. Res. Lett. 7 (2019) 376-382.
DOI URL |
[17] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[18] |
E. Fereiduni, S.S.G. Banadkouki, Mater. Des. 56 (2014) 232-240.
DOI URL |
[19] |
W. Xue, J. Zhou, Y. Shen, W. Zhang, Z. Liu, J. Mater. Sci. Technol. 35 (2019) 1869-1876.
DOI URL |
[20] |
W. Cao, M. Zhang, C. Huang, S. Xiao, H. Dong, Y. Weng, Sci. Rep. 7 (2017) 41459.
DOI URL PMID |
[21] |
H. Di, Q. Sun, X. Wang, J. Li, J. Mater. Sci. Technol. 33 (2017) 1561-1571.
DOI URL |
[22] |
G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang, J. Mater. Sci. Technol. 32 (2016) 326-332.
DOI URL |
[23] |
H. Zhou, Q.D. Wang, B. Ye, W. Guo, Mater. Sci. Eng. A 576 (2013) 101-107.
DOI URL |
[24] |
Y.I. Son, Y.K. Lee, K.-T. Park, C.S. Lee, D.H. Shin, Acta Mater. 53 (2005) 3125-3134.
DOI URL |
[25] |
H. Azizi-Alizamini, M. Militzer, W.J. Poole, ISIJ Int. 51 (2011) 958-964.
DOI URL |
[26] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[27] |
Q. Lai, O. Bouaziz, M. Gouné, A. Perlade, Y. Bréchet, T. Pardoen, Mater. Sci. Eng. A 638 (2015) 78-89.
DOI URL |
[28] |
M.C. Zhao, X.F. Huang, J.L. Li, T.Y. Zeng, Y.C. Zhao, A. Atrens, Mater. Sci. Eng. A 528 (2011) 8157-8168.
DOI URL |
[29] | L. Hao, M. Sun, N. Xiao, D. Li, J. Mater, Sci. Technol. 28 (2012) 1095-1101. |
[30] |
L. Storojeva, D. Ponge, R. Kaspar, D. Raabe, Acta Mater. 52 (2004) 2209-2220.
DOI URL |
[31] |
C.I. Garcia, A.J. De Ardo, Metall. Trans. A 12 (1981) 521-530.
DOI URL |
[32] |
J. Huang, W.J. Poole, M. Militzer, Metall. Mater. Trans. A 35 (2004) 3363-3375.
DOI URL |
[33] |
Y. Mazaheri, A. Kermanpur, A. Najafizadeh, A.G. Kalashami, Metall. Mater. Trans. A 47 (2016) 1040-1051.
DOI URL |
[34] |
Q. Lai, M. Gouné, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, Y. Bréchet, Metall. Mater. Trans. A 47 (2016) 3375-3386.
DOI URL |
[35] |
H. Azizi-Alizamini, M. Militzer, W.J. Poole, Metall. Mater. Trans. A 42 (2010) 1544-1557.
DOI URL |
[36] |
M. Kulakov, W.J. Poole, M. Militzer, Metall. Mater. Trans. A 44 (2013) 3564-3576.
DOI URL |
[37] |
M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527 (2010) 7832-7840.
DOI URL |
[38] |
L. Zhao, N. Park, Y. Tian, S. Chen, A. Shibata, N. Tsuji, Mater. Res. Lett. 5 (2017) 61-68.
DOI URL |
[39] |
Z. Pan, B. Gao, Q. Lai, X. Chen, Y. Cao, M. Liu, H. Zhou, Materials 11 (2018) 1399.
DOI URL |
[40] |
Y. Zhang, D. Zhan, X. Qi, Z. Jiang, J. Mater. Sci. Technol. 35 (2019) 1240-1249.
DOI URL |
[41] |
B. Gao, X. Chen, Z. Pan, J. Li, Y. Ma, Y. Cao, M. Liu, Q. Lai, L. Xiao, H. Zhou, J. Mater. Sci. 54 (2019) 12898-12910.
DOI URL |
[42] |
F. Lefevre-Schlick, O. Bouaziz, Y. Brechet, J.D. Embury, Mater. Sci. Eng. A 491 (2008) 80-87.
DOI URL |
[43] |
S. Sodjit, V. Uthaisangsuk, Mater. Des. 41 (2012) 370-379.
DOI URL |
[44] |
J. Zhou, A.M. Gokhale, A. Gurumurthy, S.P. Bhat, Mater. Sci. Eng. A 630 (2015) 107-115.
DOI URL |
[45] |
N.H. Abid, R.K. Abu Al-Rub, A.N. Palazotto, Int. J. Solids Struct. 104-105 (2017) 8-24.
DOI URL |
[46] |
Y. Liu, D. Fan, S.P. Bhat, A. Srivastava, Int. J. Plast. 125 (2020) 80-96.
DOI URL |
[47] |
X. Zheng, H. Ghassemi-Armaki, A. Srivastava, Mater. Sci. Eng. A 774 (2020), 138924.
DOI URL |
[48] |
J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Acta Mater. 59 (2011) 4387-4394.
DOI URL |
[49] |
Q. Han, Y. Kang, P.D. Hodgson, N. Stanford, Scr. Mater. 69 (2013) 13-16.
DOI URL |
[50] | M.F. Ashby, Philos. Mag. Abingdon (Abingdon) 21 (1970) 399-424. |
[51] |
N.A. Fleck, M.F. Ashby, J.W. Hutchinson, Scr. Mater. 48 (2003) 179-183.
DOI URL |
[1] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[2] | Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 131-141. |
[3] | M. Wang, B.B. He, M.X. Huang. Strong and ductile Mg alloys developed by dislocation engineering [J]. J. Mater. Sci. Technol., 2019, 35(3): 394-395. |
[4] | M.X. Huang, B.B. He. Alloy design by dislocation engineering [J]. J. Mater. Sci. Technol., 2018, 34(3): 417-420. |
[5] | Di Hongshuang, Sun Qian, Wang Xiaonan, Li Jianping. Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding [J]. J. Mater. Sci. Technol., 2017, 33(12): 1561-1571. |
[6] | G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang. Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Spot Welded DP780 Steel [J]. J. Mater. Sci. Technol., 2016, 32(4): 326-333. |
[7] | P. Nageswara rao, Dharmendra Singh, R. Jayaganthan. Effect of Post Cryorolling Treatments on Microstructural and Mechanical Behaviour of Ultrafine Grained Al-Mg-Si Alloy [J]. J. Mater. Sci. Technol., 2014, 30(10): 998-1005. |
[8] | V.Abouei, H.Saghafian, Sh.Kheir, ish, Kh.Ranjbar. A Study on the Wear Behaviour of Dual Phase Steels [J]. J Mater Sci Technol, 2007, 23(01): 107-110. |
[9] | A.Najafi-zadeh, R.Ebrahimi. Effect of Delay Time on Microstructural Evolution during Warm Rolling of Ti-Nb-IF Steel [J]. J Mater Sci Technol, 2004, 20(01): 86-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||