Please wait a minute...
J. Mater. Sci. Technol.  2016, Vol. 32 Issue (4): 326-333    DOI: 10.1016/j.jmst.2015.10.009
Orignal Article Current Issue | Archive | Adv Search |
Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Spot Welded DP780 Steel
G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  DP780 steel sheets consisting of ferrite and martensite were successfully friction stir spot welded (FSSW) at the rotation rates of 500 to 1500 r/min using a W-Re alloy tool. The effect of rotation rate on microstructure and mechanical properties of the FSSW DP780 was investigated. The peak temperatures in the welds at various rotation rates were identified to be above A3 temperature. FSSW caused the dynamic recrystallization in the stir zone (SZ), thereby producing the fine equiaxed grain structures. At the higher rotation rates of ≥1000 r/min, a full martensitic structure was observed throughout the SZs, whereas at the lower rotation rate of 500 r/min, the SZ consisted of a fine dual phase structure of ferrite and martensite due to the action of deformation induced ferrite transformation. The maximum average failure load as high as 18.2 kN was obtained at the rotation rate of 1000 r/min and the fracture occurred at the thinned upper sheet.
Key words:  Friction stir spot welding      Dual phase steel      Microstructure      Deformation induced ferrite transformation      Mechanical property     
Received:  10 April 2015     
Fund: This work was supported by the National Natural Science Foundation of China (No. 51001023), the Fundamental Research for the Chinese Central Universities (No. N120407004) and the National High Technology Research and Development Program of China (No. 2015AA03A501). The authors are particularly grateful to Prof. R.D. Liu, the Ansteel Group Co., China, for providing the experimental materials.
Corresponding Authors:  Tel.: +86 24 83673172; Fax: +86 24 23906472.   

Cite this article: 

G.M. Xie, H.B. Cui, Z.A. Luo, W. Yu, J. Ma, G.D. Wang. Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Spot Welded DP780 Steel. J. Mater. Sci. Technol., 2016, 32(4): 326-333.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2015.10.009     OR     https://www.jmst.org/EN/Y2016/V32/I4/326

[1] M. Pouranvari, S.P.H. Marashi Sci. Technol. Weld. Join, 18 (2013), pp. 361-403
[2] H.Y. Zhang, J. Senkara Resistance Welding Fundamentals and Applications (first ed.)CRC Press Inc., Boca Raton, FL (2006), pp. 1-17
[3] C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee, E. Biro Mater. Sci. Eng. A Struct. Mater, 485 (2008), pp. 334-346
[4] R.S. Mishra, Z.Y. Ma Mater. Sci. Eng. R Rep, 50 (2005), pp. 1-78
[5] Y. Kano, M. Inuzuka, S. Yamashita, Y. Nakashima, Y. Nagao, T. Iwashita, JP Patent, No. 2000-355770, 2000.
[6] D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng, M.L. Santella Mater. Sci. Eng. A Struct. Mater, 441 (2006), pp. 79-96
[7] Q. Yang, S. Mironov, Y.S. Sato, K. Okamoto Mater. Sci. Eng. A Struct. Mater, 527 (2010), pp. 4389-4398
[8] A. Gerlich, P. Su, T.H. North J. Mater. Sci, 40 (2005), pp. 6473-6481
[9] Mazda News Release Mazda develops world's first aluminum joining technology using friction heat February 27 http://www2.mazda.com/en/publicity/release/2003/200302/0227e.html (2003)
[10] M.I. Khan, M.L. Kuntz, P. Su, A. Gerlich, T. North, Y. Zhou Sci. Technol. Weld. Join, 12 (2007), pp. 175-182
[11] R. Ohashi Weld. World, 55 (2011), pp. 2-11
[12] Z. Feng, M.L. Santella, S.A. David, R.J. Steel, S.M. Packer, T. Pan, M. Kuo, R.S. Bhatnagar SAE Int, 1 (2005), pp. 1248-1254
[13] M. Santella, Y. Hovanski, A. Frederick, G. Grant, M. Dahl Sci. Technol. Weld. Join, 15 (2010), pp. 271-278
[14] N. Saunders, M. Miles, T. Hartman, Y. Hovanski, S.T. Hong, R. Steel Int. J. Precis. Eng. Manuf, 15 (2014), pp. 841-848
[15] R. Ohashi, M. Fujimoto, S. Mironov, Y.S. Sato, H. Kokawa Sci. Technol. Weld. Join, 14 (2009), pp. 221-227
[16] M.P. Miles, C.S. Ridges, Y. Hovanski, J. Peterson, M.L. Santella, R. Steel Sci. Technol. Weld. Join, 16 (2011), pp. 642-647
[17] Y.F. Sun, H. Fujii, N. Takaki, Y. Okitsu Mater. Des, 37 (2012), pp. 384-392
[18] T.J. Lienert, W.L. Stellwag Jr., B.B. Grimmett, R.M. Warke Weld. J., 82 (2003), pp. 1-9
[19] L.Y. Wei, T.W. Nelson Weld. J., 90 (2011), pp. 95-101
[20] S.J. Barnes, A.R. Bhatti, A. Steuwer, R. Johnson, J. Altenkirch, P.J. Withers Metall. Mater. Trans. A, 43 (2012), pp. 2342-2355
[21] B.M. Patchett, J.E. Bringas, R.D. Thomas The Metals Blue Book (fourth ed.)CASTI Publishing Inc., Edmonton, Alberta, Canada (2003), pp. 18-19
[22] H. Yada, C.M. Li, H. Yamagata ISIJ Int, 40 (2000), pp. 200-206
[23] P.D. Hodgson, M.R. Hickson, R.K. Gibbs Scr. Mater, 40 (1999), pp. 1179-1184
[24] S.C. Hong, K.S. Lee Mater. Sci. Eng. A Struct. Mater, 323 (2002), pp. 148-159
[25] K. Kuykendall, T. Nelson, C. Sorensen Int. J. Mach. Tools Manuf, 74 (2013), pp. 74-85
[26] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi Mater. Sci. Eng. A Struct. Mater, 429 (2006), pp. 50-57
[27] P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang, Z.Y. Ma Mater. Sci. Eng. A Struct. Mater, 575 (2013), pp. 30-34
[28] H.K.D.H. Bhadeshia, T. DebRoy Sci. Technol. Weld. Join, 14 (2009), pp. 193-196
[29] R. Dimitriu, H.K.D.H. Bhadeshia Mater. Sci. Technol, 23 (2007), pp. 1127-1131
[30] AWS Specification for Automotive Weld Quality-Resistance Spot Welding of Steel American Welding Society, Inc., Miami, FL (2007) AWS D8.1
[1] Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements[J]. 材料科学与技术, 2020, 42(0): 113-121.
[2] Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire[J]. 材料科学与技术, 2020, 45(0): 44-48.
[3] Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy[J]. 材料科学与技术, 2020, 45(0): 59-69.
[4] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[5] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[6] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[7] S.M. Liang, H.M. Ji, X.W. Li. Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces[J]. 材料科学与技术, 2020, 44(0): 1-8.
[8] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[9] Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study[J]. 材料科学与技术, 2020, 43(0): 119-125.
[10] Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel[J]. 材料科学与技术, 2020, 42(0): 75-84.
[11] Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys[J]. 材料科学与技术, 2020, 44(0): 201-208.
[12] Zhonghua Jiang, Pei Wang, Dianzhong Li, Yiyi Li. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels[J]. 材料科学与技术, 2020, 45(0): 1-14.
[13] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[14] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[15] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.