J. Mater. Sci. Technol. ›› 2021, Vol. 60: 147-155.DOI: 10.1016/j.jmst.2020.05.037
• Research Article • Previous Articles Next Articles
Haoxuan Wanga, Shouye Wanga, Yejie Caoa,*(), Wen Liub, Yiguang Wangc,*()
Received:
2020-03-07
Revised:
2020-05-21
Accepted:
2020-05-21
Published:
2021-01-10
Online:
2021-01-22
Contact:
Yejie Cao,Yiguang Wang
Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C[J]. J. Mater. Sci. Technol., 2021, 60: 147-155.
Fig. 3. SEM surface images of HZTNC and HZTNC-SiC ceramics after isothermal oxidation at different temperatures: (a) HZTNC, 1300 °C, (b) HZTNC-SiC, 1300 °C, (c) HZTNC, 1400 °C, (d) HZTNC-SiC, 1400 °C, (e) HZTNC, 1500 °C, (f) HZTNC-SiC, 1500 °C.
Fig. 4. (a-c) Square of the specific weight change as a function of oxidation time at 1300, 1400, and 1500 °C; (d) the relationship between lnkp and the reciprocal of temperature.
kp, 1300 °C | kp, 1400 °C | kp, 1500 °C | Activation energy | |
---|---|---|---|---|
(mg2/cm4 h | (mg2/cm4 h | (mg2/cm4 h | (kJ/mol) | |
HZTNC | 26.31 | 47.46 | 64.07 | 103 |
HZTNC-SiC | 6.36 | 15.03 | 22.42 | 146 |
HZTTNC | 53.90 | 81.76 | 152.10 | 134 |
HZTTNC-SiC | 18.30 | 32.67 | 56.69 | 130 |
ZrB2-SiC | 11.81 | - | 38.91 | 212 |
Table 1 Calculated parabolic rate constants and activation energies for HZTNC, HZTNC-SiC, HZTTNC [35], HZTTNC-SiC [31] and ZrB2-SiC [46] ceramics.
kp, 1300 °C | kp, 1400 °C | kp, 1500 °C | Activation energy | |
---|---|---|---|---|
(mg2/cm4 h | (mg2/cm4 h | (mg2/cm4 h | (kJ/mol) | |
HZTNC | 26.31 | 47.46 | 64.07 | 103 |
HZTNC-SiC | 6.36 | 15.03 | 22.42 | 146 |
HZTTNC | 53.90 | 81.76 | 152.10 | 134 |
HZTTNC-SiC | 18.30 | 32.67 | 56.69 | 130 |
ZrB2-SiC | 11.81 | - | 38.91 | 212 |
Fig. 6. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNC ceramics at 1300 °C for different time: (a) HZTNC, 20 min, (b) HZTNC, 60 min.
Fig. 7. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNCSiC ceramics at 1300 °C for different time: (a) HZTNC-SiC, 20 min, (b) HZTNC-SiC, 60 min.
Fig. 8. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNC ceramics at 1400 °C for different time: (a) HZTNC, 20 min, (b) HZTNC, 60 min.
Fig. 9. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNCSiC ceramics at 1400 °C for different time: (a) HZTNC-SiC, 20 min, (b) HZTNC-SiC, 60 min.
Fig. 10. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNC ceramics at 1500 °C for different time: (a) HZTNC, 20 min, (b) HZTNC, 60 min.
Fig. 11. Cross-sectional morphologies and EDX mapping for five constituting elements of the oxidized HZTNC-SiC ceramics at 1500 °C for different time: (a) HZTNC-SiC, 20 min, (b) HZTNC-SiC, 60 min. (*1 Hf(Zr)TiO4, Hf(Zr)SiO4, Nb(Ta)2O5 layer; 2 Hf-Zr-Ta-Nb-Si-O layer).
[1] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 38(2020) 80-85.
DOI URL |
[2] |
Y. Qin, J.X. Liu, F. Li, X.F. Wei, H.Z. Wu, G.J. Zhang, J. Adv. Ceram. 8(2019) 148-152.
DOI URL |
[3] |
X.Q. Shen, J.X. Liu, F. Li, G.J. Zhang, Ceram. Int. 45(2019) 24508-24514.
DOI URL |
[4] |
R.Z. Zhang, J. Reece, Michael , J. Mater. Chem. A. 7(2019) 22148-22162.
DOI URL |
[5] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 36(2020) 134-139.
DOI URL |
[6] |
K. Wang, L. Chen, C.G. Xu, W. Zhang, Z.G. Liu, Y.J. Wang, J.H. Ouyang, X.H. Zhang, Y.D. Fu, Y. Zhou, J. Mater. Sci. Technol. 39(2020) 99-105.
DOI URL |
[7] |
F. Li, W.C. Bao, S.K. Sun, L. Zhou, J.X. Liu, F.F. Xu, G.J. Zhang, Scripta Mater. 176(2020) 17-22.
DOI URL |
[8] | X.Q. Shen, J.X. Liu, F. Li, G.J. Zhang, Ceram. Int. 45(2019) 24508-24514. |
[9] |
F.Z. Dai, B. Wen, Y.J. Sun, H.M. Xiang, Y.C. Zhou, J. Mater. Sci. Technol. 43(2020) 168-174.
DOI URL |
[10] | A. Kumar, M. Gupta, Metals. Basel. 6 (9) (2016) 199. |
[11] |
X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101(2018) 4486-4491.
DOI URL |
[12] | D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, O. Vasylkiv, Scripta. Mater. 164 (2019) 12-16. |
[13] | H. Chen, B. Zhao, Z.F. Zhao, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 47(2020) 216-222. |
[14] | Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35(2019) 2892-2896. |
[15] | F. Li, L. Zhou, J.X. Liu, Y.C. Liang, G.J. Zhang, J. Adv. Ceram. 8(2019) 576-582. |
[16] | Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 47(2020) 45-51. |
[17] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6(2015) 8485.
DOI URL PMID |
[18] | X.F. Wei, Y. Qin, J.X. Liu, F. Li, Y.C. Liang, G.J. Zhang, J. Eur. Ceram. Soc. 40(2020) 935-941. |
[19] | F. Li, Y. Lu, X.G. Wang, W.C. Bao, J.X. Liu, F.F. Xu, G.J. Zhang, Ceram. Int. 45(2019) 22437-22441. |
[20] | X.F. Wei, J.X. Liu, F. Li, Y. Qin, Y.C. Liang, G.J. Zhang, J. Eur. Ceram. Soc. 39(2019) 2989-2994. |
[21] |
J. Dusza, P. svec, V. Girman, R. Sedlák, E.G. Castle, T. Csanádi, A. KovalCíková, M. J. Reece, J. Eur. Ceram. Soc. 38(2018) 4303-4307.
DOI URL |
[22] |
J.Y. Zhou, J.Y. Zhang, F. Zhang, B. Niu, L.W. Lei, W.M. Wang, Ceram. Int. 44(2018) 22014-22018.
DOI URL |
[23] |
S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scripta. Mater. 142(2018) 116-120.
DOI URL |
[24] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.H. Zhou, J. Mater. Sci. Technol. 39(2020) 167-172.
DOI URL |
[25] |
J. D˛abrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Mater. Lett. 216(2018) 32-36.
DOI URL |
[26] |
J. Gild, K. Kaufmann, K. Vecchio, J. Luo, Scripta. Mater. 170(2019) 106-110.
DOI URL |
[27] |
J. Yan, F. Liu, G. Ma, B. Gong, J. Zhu, X. Wang, W. Ao, C. Zhang, Y. Li, J. Li, Scripta Mater. 157(2018) 129-134.
DOI URL |
[28] | J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, J. Luo, J. Mater, 5(2019) 337-343. |
[29] |
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9(2018) 4980.
DOI URL PMID |
[30] | Sarkar , L. Velasco, D. Wang, Q.S. Wang, G. Talasila, L.D. Biasi, C. Kübe, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, Nat.Commun. 9(2018) 3400. |
[31] |
H.X. Wang, Y.J. Cao, W. Liu, Y.G. Wang, Ceram. Int. 46(2020) 11160-11168.
DOI URL |
[32] |
Y.Q. Tan, C. Chen, S.G. Li, X.C. Han, J.X. Xue, T. Liu, Z.S. Zhou, H.B. Zhang, J. Alloys Compd. 816(2020), 152523.
DOI URL |
[33] |
K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, Y.G. Wang, Scripta Mater. 178(2020) 382-386.
DOI URL |
[34] | Y. Dong, K. Ren, Y.H. Lu, Q.K. Wang, J. Liu, Y.G. Wang, J. Eur. Ceram. Soc. 39(2019) 2574-2579. |
[35] |
H.X. Wang, Y.J. Cao, W. Liu, Y.G. Wang, J. Eur. Ceram. Soc. (2020) (Submitted).
URL PMID |
[36] | Z. Teng, L.N. Zhu, Y.Q. Tan, S.F. Zeng, Y.H. Xia, Y.G. Wang, H.B. Zhang, J. Eur. Ceram. Soc. 40(2020) 1639-1643. |
[37] | Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.H. Zhou, J. Mater. Sci. Technol. 35(2019) 2647-2651. |
[38] | R. Savino, M.D.S. Fumo, D. Paterna, M. Serpico, Aerosp. Sci. Technol. 9(2005) 151-160. |
[39] | M. Le-Huu, H. Schmitt, S. Noll, M. Grieb, F.F. Schrey, A.J. Bauer, L. Frey, H. Ryssel, Microelectron. Reliab. 51(2011) 1346-1350. |
[40] |
K. Yueh, K.A. Terrani, J. Nucl. Mater. 448(2014) 380-388.
DOI URL |
[41] | Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Curr. Opin. Solid State Mater. Sci. 16(2012) 143-152. |
[42] |
J. Gild, Y. Zhao, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6(2016) 37946.
DOI URL PMID |
[43] |
T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, Acta Mater. 55(2007) 5999-6010.
DOI URL |
[44] |
P. Sarin, P.E. Driemeyer, R.P. Haggerty, D.K. Kim, J.L. Bell, Z.D. Apostolov, W.M. Kriven, J. Eur. Ceram. Soc. 30(2010) 2375-2386.
DOI URL |
[45] |
S. Shimada, M. Inagaki, K. Matsui, J. Am. Ceram. Soc. 75(1992) 2671-2678.
DOI URL |
[46] | Y.G. Wang, B.S. Ma, L.L. Li, L.N. An, J. Am. Ceram. Soc. 95(2012) 374-378. |
[47] | N. Li, P. Hu, X.H. Zhang, Y.Z. Liu, W.B. Han, Corros. Sci. 73(2013) 44-53. |
[48] | Y.G. Wang, L. Luo, J. Sun, L.N. An, Corros. Sci. 74(2013) 154-158. |
[49] | J.B. He, Y.G. Wang, L. Luo, L.N. An, J. Am. Ceram. Soc. 36(2016) 3769-3774. |
[50] | B.E. Deal, A.S. Grove, J. Appl. Phys. 36(1965) 3770-3778. |
[51] | N.S. Jacobson, B. Harder, D. Myers, J. Am. Ceram. Soc. 96(2013) 838-844. |
[52] |
H.E. Evans, Surf. Coat. Technol. 206(2011) 1512-1521.
DOI URL |
[53] |
M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, C. Badini, Eng. Fail. Anal. 13(2006) 409-426.
DOI URL |
[54] | W.G. Fahrenholtz, J. Am. Ceram. Soc. 90(2007) 143-148. |
[1] | Si-Chun Luo, Wei-Ming Guo, Yu-Zhang Zhou, Kevin Plucknett, Hua-Tay Lin. Textured and toughened high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCw ceramics [J]. J. Mater. Sci. Technol., 2021, 94(0): 99-103. |
[2] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[3] | Kyu-Sik Kim, Sangsun Yang, Myeong-Se Kim, Kee-Ahn Lee. Effect of post heat-treatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 76(0): 95-103. |
[4] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[5] | Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. J. Mater. Sci. Technol., 2020, 43(0): 64-73. |
[6] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
[7] | Wei Sun, Fuzhi Dai, Huimin Xiang, Jiachen Liu, Yanchun Zhou. General trends in surface stability and oxygen adsorption behavior of transition metal diborides (TMB2) [J]. J. Mater. Sci. Technol., 2019, 35(4): 584-590. |
[8] | Xuejin Yang, Bin Li, Duan Li, Changwei Shao, Changrui Zhang, Chunrong Zou, Kun Liu. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2761-2766. |
[9] | Jihua Peng, Dongyi Su, Chengxi Wang. Combined Effect of Aluminum Content and Layer Structure on the Oxidation Performance of Ti1-xAlxN Based Coatings [J]. J. Mater. Sci. Technol., 2014, 30(8): 803-807. |
[10] | Zhaofeng Chen, Wangping Wu, Xiangna Cong. Oxidation Resistance Coatings of Ir–Zr and Ir by Double Glow Plasma [J]. J. Mater. Sci. Technol., 2014, 30(3): 268-274. |
[11] | Xiyuan Yao, Hejun Li, Yulei Zhang, Yongjie Wang. Oxidation and Mechanical Properties of SiC/SiC–MoSi2–ZrB2 Coating for Carbon/Carbon Composites [J]. J. Mater. Sci. Technol., 2014, 30(2): 123-127. |
[12] | Ming Luo, Yawei Li, Shengli Jin, Shaobai Sang, Lei Zhao. Microstructural Evolution and Oxidation Resistance of Multi-walled Carbon Nanotubes in the Presence of Silicon Powder at High Temperatures [J]. J Mater Sci Technol, 2012, 28(7): 599-605. |
[13] | Y.C. Ma, X.J. Zhao, M. Gao, K. Liu. High-Temperature Oxidation Behavior of a Ni-Cr-W-Al Alloy [J]. J Mater Sci Technol, 2011, 27(9): 841-845. |
[14] | Beiyue Ma Qiang Zhu Yong Sun Jingkun Yu Ying Li. Synthesis of Al2O3-SiC Composite and Its Effect on the Properties of Low-carbon MgO-C Refractories [J]. J Mater Sci Technol, 2010, 26(8): 715-720. |
[15] | LI Wenchao FAN Zishuan SUN Guiru QIN Fu University of Science and Technology of Beijing, China. General Research Institute for Nonferrous Metals, Beijing, China.. Oxidation Kinetics of (111) Silicon Monocrystal and Morphology of Oxide Film in Dry Oxygen Atmosphere [J]. J Mater Sci Technol, 1989, 5(5): 362-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||