Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 179-185    DOI: 10.1016/j.jmst.2020.01.050
Research Article Current Issue | Archive | Adv Search |
An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite
Haoqiang Zhanga,b, Lin Liua,b, Zhiliang Peia, Nanlin Shia, Jun Gonga, Chao Suna,*()
a Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
b School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Download:  HTML  PDF(2528KB) 
Export:  BibTeX | EndNote (RIS)      

In this work, a modified approach for preparing CVD SiC fiber-reinforced superalloy matrix composites was rationally developed. The composites were fabricated by vacuum hot pressing (VHP) process using precursor wires coated with (Al + Al2O3) diffusion barrier layers and GH4169 superalloy coatings. BNi-7 brazing filler metals were introduced on the surface of precursor wires in order to decrease the temperature of the VHP process. It was found that the VHP temperature was reduced by about 100 °C, and the melting, diffusion, nucleation and growth processes of BNi-7 fillers at 900 °C motivated the recrystallization and plastic flow of the matrix under the increasing pressure, thereby a compact composite composed of intact SiC fibers and fine equiaxial grain structure superalloy matrix was achieved. Meanwhile, the elements were distributed homogeneously among the fibers in the composite and no interfacial reactions occurred. This method provides a new insight for designing and manufacturing high-quality composites in practical engineering.

Key words:  SiC fiber      Superalloy      Diffusion barrier      Brazing filler metal     
Received:  21 November 2019     
Corresponding Authors:  Chao Sun     E-mail:

Cite this article: 

Haoqiang Zhang, Lin Liu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite. J. Mater. Sci. Technol., 2020, 49(0): 179-185.

URL:     OR

C Cr Mo Nb Al Ti Ni Co Fe
≤0.08 20.83 2.86 4.81 0.39 1.11 50.57 0.44 Bal.
Table 1  Composition of GH4169 superalloy targets (wt.%).
C Cr P B Si Fe Ni
≤0.06 13.0~15.0 9.7~10.5 0.01 0.10 0.2 Bal.
Table 2  Chemical composition of BNi-7 BFMs (wt.%).
Fig. 1.  Schematic illustration of procedures of fabricating the composite.
Base pressure
Frequency (kHz) Duty cycle
Voltage (V) Current (A) Time (h)
(Al + Al2O3) Al 4 × 10-3 30 33.3 600 1 0.1
Al2O3 4 × 10-3 30 33.3 400 1.5 18
GH4169 4 × 10-3 30 33.3 600 1.5 18.5
Table 3  Detailed sputtering parameters used for depositing (Al + Al2O3) diffusion barrier layer and the GH4169 superalloy coating.
Fig. 2.  Side face (a), surface (b), cross-section (c) and interface (d) morphologies of precursor wire.
Fig. 3.  Morphologies of composites at condition of 1020 °C/40 MPa/2 h (a), 1020 °C/50 MPa/2 h (b).
Fig. 4.  Morphologies of composites fabricated in 900 °C/50 MPa/2 h with 15 mg/cm2 (a), 900 °C/50 MPa/2 h with 30 mg/cm2 (b), 900 °C/50 MPa/2 h with 45 mg/cm2 (c), 900 °C/60 MPa/2 h with 30 mg/cm2 (d), 900 °C/70 MPa/2 h with 30 mg/cm2 (e), 900 °C/80 MPa/2 h with 30 mg/cm2 (f).
Fig. 5.  Interface morphology and elemental distribution across fibers in composite prepared on condition of 900 °C/70 MPa/2 h.
Fig. 6.  XRD patterns of precursor wire and composite (900 °C/70 MPa/2 h).
Fig. 7.  Microstructure (a) and EBSD orientation map (b) of matrix in cross-section of composite.
Fig. 8.  Pole figures of matrix in composite.
Fig. 9.  Schematic illustration of the recrystallization process.
[1] K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska-Sarnek, A. Czyrska-Filemonowicz, Mater. Charact. 100 (2015) 74-80.
[2] M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Sci. Eng. A 678 (2016) 137-152.
[3] M.C. Rezende, L.S. Araújo, S.B. Gabriel, J. Dille L.H. de Almeida, J. Alloys. Compd. 643 (2015) S256-S259.
[4] D. Zhang, W. Niu, X. Cao, Z. Liu, Mater. Sci. Eng. A 644 (2015) 32-40.
doi: 10.1016/j.msea.2015.06.021
[5] S. Pramanik, J. Cherusseri, N.S. Baban, L. Sowntharya, K.K. Kar, in: K.K. Kar (Ed.), Composite Materials: Processing, Applications, Characterizations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 369-411.
[6] M. Sadighi, R.C. Alderliesten, R. Benedictus, Int. J. Impact Eng. 49 (2012) 77-90.
doi: 10.1016/j.ijimpeng.2012.05.006
[7] P. Moongkhamklang, V.S. Deshpande H.N.G. Wadley, Acta Mater. 58 (2010) 2822-2835.
doi: 10.1016/j.actamat.2010.01.004
[8] G.M. Zhao, Y.Q. Yang, W. Zhang, X. Luo, B. Huang, Y. Chen, Compos. Part B Eng. 52 (2013) 155-163.
doi: 10.1016/j.compositesb.2013.04.024
[9] K. Naseem, Y. Yang, X. Luo, B. Huang, G. Feng, Mater. Sci. Eng. A 528 (2011) 4507-4515.
[10] M. Wu, K. Zhang, H. Huang, M. Wang, H. Li, S. Zhang, M. Wen, Carbon 124 (2017) 238-249.
doi: 10.1016/j.carbon.2017.08.065
[11] Q. Sun, X. Luo, Y.Q. Yang, B. Huang, N. Jin, W. Zhang, G.M. Zhao, Compos. Part B Eng. 79 (2015) 466-475.
doi: 10.1016/j.compositesb.2015.05.001
[12] G.H. Feng, Y.Q. Yang, X. Luo, J. Li, B. Huang, Y. Chen, Compos. Part B Eng. 68 (2015) 336-342.
doi: 10.1016/j.compositesb.2014.09.005
[13] H. Liu, H. Cheng, J. Wang, G. Tang, J. Alloys. Compd. 491 (2010) 248-251.
[14] K. Shimoda, T. Hinoki, H. Kishimoto, A. Kohyama, Compos. Sci. Technol. 71 (2011) 326-332.
doi: 10.1016/j.compscitech.2010.11.026
[15] B.H. Jin, N.L. Shi, J. Mater. Sci. Technol. 24 (2008) 261-264.
doi: 10.1179/174328408X269321
[16] K. Bhanumurthy, R. Schmid-Fetzer, Compos. Part A Appl. Sci. Manuf. 32 (2001) 569-574.
[17] J. Rogowski, A. Kubiak, Mater. Sci. Eng. B 177 (2012) 1318-1322.
[18] C. Song, T. Lin, P. He, W. Yang, D. Jia, J. Feng, Ceram. Int. 40 (2014) 17-23.
[19] A. Hähnel, E. Pippel, J. Woltersdorf, Scr. Mater. 60 (2009) 858-861.
[20] D.J. Larkin, L.V. Interrante, A. Bose, J. Mater. Res. 5 (1990) 2706-2717.
doi: 10.1557/JMR.1990.2706
[21] J.H. Chen, H. Huang, K. Zhang, M.J. Wang, M. Wu, H. Li, S.M. Zhang, M. Wen, J. Alloys. Compd. 765 (2018) 18-26.
[22] M.L. Hattali, S. Valette, F. Ropital, G. Stremsdoerfer, N. Mesrati, D. Tréheux, J. Eur. Ceram. Soc. 29 (2009) 813-819.
[23] P. Li, Y. Zhang, G. Zhang, S. Fu, T. Wang, X. Qu, Mater. Res. Innov. 18 (2014) 499-504.
[24] L. Zhang, N. Shi, J. Gong, C. Sun, J. Mater. Sci. Technol. 28 (2012) 234-240.
[25] X. Niu, H. Zhang, Z. Pei, N. Shi, C. Sun, J. Gong, J. Mater. Sci. Technol. 35 (2019) 88-93.
doi: 10.1016/j.jmst.2018.09.023
[26] C. Zhao, Y. Wang, G. Zhang, Q. Yang, X. Zhang, L.N. Yang, R. Yang, J. Mater. Sci. Technol. 33 (2017) 1378-1385.
[27] A. Elrefaey, High-Temperature Brazing in Aerospace Engineering, Woodhead Publishing, 2012, pp. 345-383.
[28] X.W. Wu, R.S. Chandel, H. Li, H.P. Seow, S.C. Wu, J. Mater. Process. Technol. 104 (2000) 34-43.
[29] N. Wu, Y. Li, J. Wang, U.A. Puchkov, J. Mater. Process. Technol. 212 (2012) 794-800.
[30] M. Baranowski, M. Bober, A. Kudyba, N. Sobczak, J. Mater. Eng. Perform. 28 (2019) 3950-3959.
[31] H. Chen, Y. Zhong, W. Hu, G. Gottstein, Mater. Sci. Eng. A 452 (2007) 625-632.
[32] B. Derby, E.R. Wallach, Met. Sci. 16 (1982) 49-56.
[33] B. Derby, E.R. Wallach, Met. Sci. 18 (1984) 427-431.
doi: 10.1179/030634584790419809
[34] M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, J. Calvo, Mater. Des. 94 (2016) 28-38.
doi: 10.1016/j.matdes.2015.12.157
[35] M.S. Yeh, T.H. Chuang, Metall. Mater. Trans. A 28 (1997) 1367-1376.
doi: 10.1007/s11661-997-0273-5
[36] M. Abdelfatah, O.A. Ojo, Mater. Sci. Technol. 25 (2013) 61-67.
doi: 10.1179/174328407X185929
[37] S. Zhang, L. Huang, A. Zhang, L. Yu, X. Xin, W. Sun, X. Sun, J. Mater. Sci. Technol. 33 (2017) 187-191.
doi: 10.1016/j.jmst.2016.09.010
[38] A. Zhang, S. Zhang, F. Liu, F. Qi, X. Yao, Y. Tan, D. Jia, W. Sun, J. Mater. Sci. Technol. 35 (2019) 1485-1490.
[1] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[2] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[3] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[4] Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water[J]. 材料科学与技术, 2020, 42(0): 163-174.
[5] Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 44(0): 76-95.
[6] Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 7-17.
[7] Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. 材料科学与技术, 2020, 38(0): 28-38.
[8] Hao Yu, Wei Xu, Sybrand van der Zwaag. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys[J]. 材料科学与技术, 2020, 45(0): 207-214.
[9] Qiang Zhu, Chuanjie Wang, Kai Yang, Gang Chen, Heyong Qin, Peng Zhang. Plastic deformation behavior of a nickel-based superalloy on the mesoscopic scale[J]. 材料科学与技术, 2020, 40(0): 146-157.
[10] Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale[J]. 材料科学与技术, 2020, 47(0): 177-189.
[11] Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys[J]. 材料科学与技术, 2020, 40(0): 54-63.
[12] Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃[J]. 材料科学与技术, 2020, 45(0): 125-132.
[13] Yanke Liu, Yulong Cai, Chenggang Tian, Guoliang Zhang, Guoming Han, Shihua Fu, Chuanyong Cui, Qingchuan Zhang. Experimental investigation of a Portevin-Le Chatelier band in Ni‒Co-based superalloys in relation to γʹ precipitates at 500 ℃[J]. 材料科学与技术, 2020, 49(0): 35-41.
[14] Kuiliang Zhang, Yingju Li, Yuansheng Yang. Influence of the low voltage pulsed magnetic field on the columnar-to-equiaxed transition during directional solidification of superalloy K4169[J]. 材料科学与技术, 2020, 48(0): 9-17.
[15] Liu Liu, Jie Meng, Jinlai Liu, Mingke Zou, Haifeng Zhang, Xudong Sun, Yizhou Zhou. Influences of Re on low-cycle fatigue behaviors of single crystal superalloys at intermediate temperature[J]. 材料科学与技术, 2019, 35(9): 1917-1924.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.