J. Mater. Sci. Technol. ›› 2020, Vol. 49: 186-201.DOI: 10.1016/j.jmst.2019.10.023
• Research Article • Previous Articles Next Articles
Zhuowei Tana, Liuyang Yangb, Dalei Zhangb,*(), Zhenbo Wanga,*(
), Frank Chengc, Mingyang Zhangd, Youhai Jina
Received:
2019-05-14
Revised:
2019-09-26
Accepted:
2019-10-17
Published:
2020-07-15
Online:
2020-07-17
Contact:
Dalei Zhang,Zhenbo Wang
Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel[J]. J. Mater. Sci. Technol., 2020, 49: 186-201.
X80 pipeline steel (balance Fe) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mn | Si | C | Cr | S | P | Ni | Ti | Nb | Mo | V |
1.83 | 0.28 | 0.063 | 0.03 | 0.0006 | 0.011 | 0.03 | 0.016 | 0.061 | 0.22 | 0.059 |
Table 1 Chemical composition of X80 pipeline steel (wt.%).
X80 pipeline steel (balance Fe) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mn | Si | C | Cr | S | P | Ni | Ti | Nb | Mo | V |
1.83 | 0.28 | 0.063 | 0.03 | 0.0006 | 0.011 | 0.03 | 0.016 | 0.061 | 0.22 | 0.059 |
Fig. 2. Schematic diagram of the experimental system: 1) gas-pressure meter, 2) gas master valve, 3) gas storage tank, 4) gas flowmeter, 5) gas flow regulating valve, 6) cooling pipe outlet, 7) cooling pipe inlet, 8) solution tank, 9) corrosion resisting centrifugal pump,10) flow master valve, 11) electrochemical workstation, 12) data acquisition computer, 13) fluid buffer box, 14) test channel, 15) testing electrode, 16) fluid distribution box, 17) vertical rotor flow meter, 18) flow control valve, and 19) return valve.
Fig. 6. EIS spectra: (a) PS at v = 3 m/s, (b) SAD at v = 3 m/s, (c) SAD at v = 5 m/s, (d) SAD at v = 7 m/s. Left: Nyquist plots; Right: Bode and |Z| plots.
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | Qpf (Ω-1 cm-2 s-n) | npf | Rpf (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|---|
1 | 11.06 | 2.6E-4 | 0.8223 | 284.1 | 4.82 | |||
3 | 11.04 | 2.9E-4 | 0.8003 | 275.5 | 5.16 | |||
6 | 11.24 | 4.1E-4 | 0.7684 | 269.3 | 4.04 | |||
7 | 11.36 | 6.9E-5 | 1 | 39.89 | 4.8E-4 | 0.8614 | 214.2 | 8.31 |
10 | 11.31 | 6.9E-5 | 1 | 38.95 | 5.3E-4 | 0.8570 | 208.7 | 8.92 |
13 | 11.05 | 7.4E-5 | 1 | 36.29 | 6.5E-4 | 0.8529 | 188.7 | 9.14 |
16 | 11.37 | 7.6E-5 | 1 | 35.87 | 7.3E-4 | 0.8515 | 183.9 | 9.01 |
Table 2 Equivalent circuit fitting of EIS data of the PS, v = 3 m/s.
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | Qpf (Ω-1 cm-2 s-n) | npf | Rpf (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|---|
1 | 11.06 | 2.6E-4 | 0.8223 | 284.1 | 4.82 | |||
3 | 11.04 | 2.9E-4 | 0.8003 | 275.5 | 5.16 | |||
6 | 11.24 | 4.1E-4 | 0.7684 | 269.3 | 4.04 | |||
7 | 11.36 | 6.9E-5 | 1 | 39.89 | 4.8E-4 | 0.8614 | 214.2 | 8.31 |
10 | 11.31 | 6.9E-5 | 1 | 38.95 | 5.3E-4 | 0.8570 | 208.7 | 8.92 |
13 | 11.05 | 7.4E-5 | 1 | 36.29 | 6.5E-4 | 0.8529 | 188.7 | 9.14 |
16 | 11.37 | 7.6E-5 | 1 | 35.87 | 7.3E-4 | 0.8515 | 183.9 | 9.01 |
Time(h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.57 | 3.7E-4 | 0.9292 | 59.97 | 119.0 | 214.3 | 6.32 |
4 | 11.73 | 5.4E-4 | 0.9775 | 31.25 | 87.51 | 80.83 | 7.98 |
7 | 11.74 | 8.3E-4 | 1 | 21.98 | 63.51 | 67.07 | 4.67 |
10 | 11.59 | 1.1E-3 | 1 | 19.53 | 71.10 | 66.66 | 7.17 |
13 | 11.07 | 2.4E-3 | 1 | 16.29 | 91.98 | 97.67 | 6.52 |
16 | 11.42 | 4.5E-3 | 1 | 11.92 | 22.26 | 44.17 | 6.04 |
Table 3 Equivalent circuit fitting of EIS data of the SAD at v = 3 m/s.
Time(h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.57 | 3.7E-4 | 0.9292 | 59.97 | 119.0 | 214.3 | 6.32 |
4 | 11.73 | 5.4E-4 | 0.9775 | 31.25 | 87.51 | 80.83 | 7.98 |
7 | 11.74 | 8.3E-4 | 1 | 21.98 | 63.51 | 67.07 | 4.67 |
10 | 11.59 | 1.1E-3 | 1 | 19.53 | 71.10 | 66.66 | 7.17 |
13 | 11.07 | 2.4E-3 | 1 | 16.29 | 91.98 | 97.67 | 6.52 |
16 | 11.42 | 4.5E-3 | 1 | 11.92 | 22.26 | 44.17 | 6.04 |
Time(h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.53 | 9.7E-4 | 1 | 14.87 | 19.63 | 34.87 | 5.26 |
5 | 11.36 | 2.1E-3 | 1 | 18.97 | 496.6 | 91.76 | 6.31 |
9 | 11.58 | 2.4E-3 | 1 | 21.39 | 1655 | 168.3 | 4.44 |
Table 4 Equivalent circuit fitting of EIS data of SAD at v = 5 m/s from 1-9 h of corrosion.
Time(h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.53 | 9.7E-4 | 1 | 14.87 | 19.63 | 34.87 | 5.26 |
5 | 11.36 | 2.1E-3 | 1 | 18.97 | 496.6 | 91.76 | 6.31 |
9 | 11.58 | 2.4E-3 | 1 | 21.39 | 1655 | 168.3 | 4.44 |
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | Qdf (Ω-1 cm-2 s-n) | ndf | Rdf (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|---|
10 | 11.24 | 2.1E-3 | 1 | 15.81 | 9.4E-3 | 0.2711 | 24.23 | 8.74 |
13 | 11.31 | 2.0E-3 | 1 | 19.24 | 8.2E-3 | 0.4292 | 26.22 | 10.53 |
16 | 11.27 | 1.9E-3 | 1 | 21.74 | 9.9E-3 | 0.4664 | 25.45 | 7.32 |
Table 5 Equivalent circuit fitting of EIS data of SAD at v = 5 m/s from 10-16 h of corrosion.
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | Qdf (Ω-1 cm-2 s-n) | ndf | Rdf (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|---|
10 | 11.24 | 2.1E-3 | 1 | 15.81 | 9.4E-3 | 0.2711 | 24.23 | 8.74 |
13 | 11.31 | 2.0E-3 | 1 | 19.24 | 8.2E-3 | 0.4292 | 26.22 | 10.53 |
16 | 11.27 | 1.9E-3 | 1 | 21.74 | 9.9E-3 | 0.4664 | 25.45 | 7.32 |
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.80 | 3.1E-3 | 1 | 15.12 | 49.85 | 64.03 | 8.53 |
4 | 11.73 | 2.9E-3 | 1 | 16.02 | 80.79 | 76.3 | 5.24 |
7 | 11.74 | 2.6E-3 | 1 | 17.38 | 108.6 | 101.73 | 4.69 |
10 | 11.51 | 2.5E-3 | 1 | 18.72 | 129.5 | 107.3 | 6.41 |
13 | 11.04 | 2.2E-3 | 1 | 19.33 | 167.8 | 133 | 7.04 |
16 | 11.81 | 2.0E-3 | 1 | 20.68 | 215.4 | 151.6 | 5.92 |
Table 6 Equivalent circuit fitting of EIS data of the SAD at v = 7 m/s.
Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-n) | ndl | Rct (Ω cm2) | L (H cm-2) | RL (Ω cm2) | Ave err (%) |
---|---|---|---|---|---|---|---|
1 | 11.80 | 3.1E-3 | 1 | 15.12 | 49.85 | 64.03 | 8.53 |
4 | 11.73 | 2.9E-3 | 1 | 16.02 | 80.79 | 76.3 | 5.24 |
7 | 11.74 | 2.6E-3 | 1 | 17.38 | 108.6 | 101.73 | 4.69 |
10 | 11.51 | 2.5E-3 | 1 | 18.72 | 129.5 | 107.3 | 6.41 |
13 | 11.04 | 2.2E-3 | 1 | 19.33 | 167.8 | 133 | 7.04 |
16 | 11.81 | 2.0E-3 | 1 | 20.68 | 215.4 | 151.6 | 5.92 |
Fig. 16. Localized corrosion rate and the depth of localized corrosion pits at downstream of defect (the error bar represents the standard deviation of five deepest localized corrosion pits).
[1] | S. Nesic, W. Sun, 2.25-corrosion in acid gas solutions, Shreirs Corr. (2010) 1270-1298. |
[2] | V.V. Zav’Yalov, Corrosion of Oil-Field Pipelines, Prot. Met. 39 (2003) 274-277. |
[3] |
S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines - a review, Corros. Sci. 49 (2007) 4308-4338.
DOI URL |
[4] |
D.G. Li, Y.R. Feng, Z.Q. Bai, M.S. Zheng, Characteristics of CO 2 corrosion scale formed on N80 steel in stratum water with saturated CO 2, Appl. Surf. Sci. 253 (2007) 8371-8376.
DOI URL |
[5] | Z.Y. Hu, D.L. Duan, S.H. Hou, X.J. Ding, S. Li, Preliminary study on corrosion behaviour of carbon steel in oil-water two-phase fluids, J. Mater. Sci. Technol. 31 (2015) 1274-1281. |
[6] | H. Guo, G.F. Li, X. Cai, J.J. Zhou, W. Yang, SCC behaviour of X-70 pipe line steelin near-neutral pH solutions, J. Mater. Sci. Technol. 21 (2005) 33-38. |
[7] | G.A. Zhang, Y.F. Cheng, Corrosion of X65 steel in CO2-saturated oil fieldformation water in the absence and presence omf acetic acid, Corros. Sci. 51 (2009) 1589-1595. |
[8] | S.S.R. De, The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization, Appl. Surf. Sci. 236 (2004) 77-97. |
[9] |
G.A. Zhang, Y.F. Cheng, On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production, Corros. Sci. 51 (2009) 87-94.
DOI URL |
[10] | A. Dugstad, Mechanism of Protective Film Formation During CO2 Corrosion of Carbon Steel, NACE International, 1998. |
[11] | N. Sridhar, D.S. Dunn, A.M. Anderko, M.M. Lencka, U. Schutt, Effects of water and gas compositions on the internal corrosion of gas pipelines - modeling and experimental studies, Corrosion 57 (2001) 221-235. |
[12] | J.L. Mora-Mendoza, S. Turgoose, FeC influence on the corrosion rate of mild steel in aqueous CO systems under turbulent flow conditions, Corros. Sci. 44 (2002) 0-1246. |
[13] | N. Ochoa, C. Vega, N. Pébère, J. Lacaze, J.L. Brito, CO 2 corrosion resistance of carbon steel in relation with microstructure changes, Mater. Chem. Phys. 156 (2015) 198-205. |
[14] | L. Zeng, G.A. Zhang, X.P. Guo, C.W. Chai, Inhibition effect of thioureidoimidazoline inhibitor for the flow accelerated corrosion of an elbow, Corros. Sci. 90 (2015) 202-215. |
[15] | G.A. Zhang, L. Zeng, H.L. Huang, X.P. Guo, A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation, Corros. Sci. 77 (2013) 334-341. |
[16] |
L. Zeng, G.A. Zhang, X.P. Guo, Erosion-corrosion at different locations of X65 carbon steel elbow, Corros. Sci. 85 (2014) 318-330.
DOI URL |
[17] | E. Barmatov, T. Hughes, M. Nagl, Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions, Corros. Sci. 92 (2015) 85-94. |
[18] | X. Tang, L.Y. Xu, Y.F. Cheng Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion, Corros. Sci. 50 (2008) 1469-1474. |
[19] | S. Nesic, Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines, Energy Fuels 26 (2012) 4098-4111. |
[20] | H.J. Kim, K.H. Kim, Intuitional experiment and numerical analysis of flow characteristics affected by flow accelerated corrosion in elbow pipe system, Nucl. Eng. Des. 301 (2016) 183-188. |
[21] | T.J. Harvey, J.A. Wharton, R.J.K. Wood, Development of synergy model for erosionâ corrosion of carbon steel in a slurry pot, Tribology - Materials, Surf. Interfaces 1 (2007) 33-47. |
[22] |
X. Jiang, Y.G. Zheng, W. Ke, Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO corrosion of N80 steel in 3% NaCl solution, Corros. Sci. 47 (2005) 2636-2658.
DOI URL |
[23] | L.R.M. Ferreira, H.A. Ponte, L.S. Sanches, A. Abrantes, CO2 Corrosion in the Region Between the Static and Turbulent Flow Regimes, Mater. Res. Ibero Am. J. Mater. 18 (2015) 245-249, s. |
[24] | G.D. Eyu, G. Will, W. Dekkers, J. MacLeod, Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water, Appl. Surf. Sci. 357 (2015) 506-515. |
[25] |
O.O. Ige, L.E. Umoru, Effects of shear stress on the erosion-corrosionbehaviour of X-65 carbon steel: A combined mass-loss and profilometry study, Tribol. Int. 94 (2016) 155-164.
DOI URL |
[26] | G.A. Zhang, Y.F. Cheng, Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO-saturated oilfield formation water, Corros. Sci. 52 (2010) 2716-2724. |
[27] | L. Zeng, S. Shuang, X.P. Guo, G.A. Zhang, Erosion-corrosion of stainless steel at different locations of a 90◦elbow, Corros. Sci. 111 (2016), S0010938X16302074. |
[28] | F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Evolution of dissolution processes at the interface of carbon steel corroding in a CO environment studied by EIS, Corros. Sci. 52 (2010) 0-517. |
[29] | D. Zheng, D. Che, Y. Liu, Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline, Corros. Sci. 50 (2008) 0-3020. |
[30] | J.J. Park, E.K. Park, G.J. Lee, C.K. Rhee, M.K. Lee, Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel, Appl. Surf. Sci. 415 (2017) 143-148. |
[31] |
L. Wei, B.F.M. Pots, B. Brown, K.E. Kee, S. Nesic, A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO 2 corrosion of carbon steel pipelines? Corros. Sci. 110 (2016) 35-45.
DOI URL |
[32] | S. Zhang, L. Hou, H. Wei, Y. Wei, B. Liu, Mater. Corros. 69 (2017). |
[33] | F.F. Eliyan, A. Alfantazi, Mechanisms of corrosion and electrochemical significance of metallurgy and environment with corrosion of iron and steel in bicarbonate and carbonate solutions-a review, Corrosion 70 (2014) 880-898. |
[34] | H.M. Ezuber, A.A. Shater, Influence of environmental parameters on the corrosion behavior of 90/10 cupronickel tubes in 3.5% NaCl, Desalin. Water Treat. 57 (2015) 1-10. |
[35] |
R.B. Burstein, T. G, Reactions of pipeline steels in carbon dioxide solutions, Corros. Sci. 41 (1999) 117-139.
DOI URL |
[36] | T. Berntsen, M. Seiersten, T. Hemmingsen, Effect of FeCO3 Supersaturation And Carbide Exposure On the CO2 Corrosion Rate of Carbon Steel, 2011. |
[37] | Cd. Waard, Prediction of CO2 corrosion of carbon steel, Corr. NACE Int. (1993) 69. |
[38] |
D.A. López, W.H. Schreiner, S.R.D. Sánchez, S.N. Simison, The influence of carbon steel microstructure on corrosion layers: An XPS and SEM characterization, Appl. Surf. Sci. 207 (2003) 69-85.
DOI URL |
[39] | Pratik Murkute, J. Mater. Proc. Tech. 273(2019). |
[40] | J.L. Li, H.X. Ma, S.D. Zhu, C.T. Qu, Z.F. Yin, J.L. Li, H.X. Ma, Z.F. Yin, Erosion resistance of CO 2 corrosion scales formed on API P110 carbon steel, Corros. Sci. 86 (2014) 101-107. |
[41] | K. Gao, F. Yu, X. Pang, G. Zhang, L. Qiao, W. Chu, M. Lu, Mechanical properties of CO corrosion product scales and their relationship to corrosion rates, Corros. Sci. 50 (2008) 2796-2803. |
[42] | B.B.Y. Yang, S. Nesic, M. Elena Gennaro, B. Molinas, Mechanical Strength and Removal of a Protective Iron Carbonate Layer Formed on Mild Steel in CO2 Corrosion, Corrosion, NACE International, 2010, pp. 10383. |
[43] | J.F. S, J.K. Heuer, Microstructure analysis of coupons ex-posed to carbon dioxide corrosion in multiphase flow, Corrosion(1998) 566-575. |
[44] | W. Li, B. Brown, D. Young, S. Nesic, Investigation of Pseudo-Passivation of Mild Steel in CO2 Corrosion, orrosion 70(2014). |
[45] | Y. Xiong, B. Brown, B. Kinsella, S. Nesic, A. Pailleret, Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films, corrosion 70(2014). |
[46] | G. S, R.H. Hausler, Hydrodynamic and flow effects on corrosion inhibition, Corrosion (2004). |
[47] | W. Sun, S. Nesic, Corrosion in Acid Gas Solution, Shreir’s Corr. 2 (2010) 1270-1298. |
[48] | Z. Ma, Y. Yang, B. B, S. Nesic, M. Singer, NACE International, 2018, pp. 11192. |
[49] | G. Chen, Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, Inc, New York NY, 2005. |
[50] |
L. Wei, B.F.M. Pots, X. Zhong, S. Nesic, Inhibition of CO 2 Corrosion of Mild Steel - Study of Mechanical Effects of Highly Turbulent Disturbed Flow, Corros. Sci. 126 (2017) 208-226.
DOI URL |
[51] | M. Khalesi, S. Deckers, D. Riveros-Galan, K. Gebruers, G. Derdelinckx, Upgraded Model of Primary Gushing: From Nanobubble Formation until Liquid Expulsion, J. Am. Soc. Brew. Chem. 73 (2015) 343-346. |
[52] |
H.Y. Lin, B.A. Bianccucci, S. Deutsch, A.A. Fontaine, J.M. Tarbell, Observation and quantification of gas bubble formation on a mechanical heart valve, J. Biomech. Eng. 122 (2000) 304.
DOI URL PMID |
[53] | A. Vogel, W. Lauterborn, R. Timm, Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, J. Fluid Mech. 206 (2006) 299-338. |
[54] | L. Wei, X. Pang, K. Gao, Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments, Corrosion. Sci. 103 (2016) 132-144. |
[1] | Zhengliang Liu, Shenglong Zhu, Mingli Shen, Yixuan Jia, Wen Wang, Fuhui Wang. Microstructure and cavitation erosion behavior of sputtered NiCrAlTi coatings with and without N incorporations [J]. J. Mater. Sci. Technol., 2020, 54(0): 211-222. |
[2] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[3] | Chen Xiaoguang, Xie Ruishan, Lai Zhiwei, Liu Lei, Yan Jiuchun, Zou Guisheng. Interfacial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air [J]. J. Mater. Sci. Technol., 2017, 33(5): 492-498. |
[4] | Wu H.N.,Xu D.S.,Wang H.,Yang R.. Molecular Dynamics Simulation of Tensile Deformation and Fracture of γ-TiAl with and without Surface Defects [J]. J. Mater. Sci. Technol., 2016, 32(10): 1033-1042. |
[5] | Y.Z. Jia, J.Q. Wang, E.H. Han, W. Ke. Stress Corrosion Cracking of X80 Pipeline Steel in Near-Neutral pH Environment under Constant Load Tests with and without Preload [J]. J Mater Sci Technol, 2011, 27(11): 1039-1046. |
[6] | Wei Deng, Xiuhua Gao, Dewen Zhao, Linxiu Du, Di Wu, Guodong Wang. Effect of Ti-enriched Carbonitride on Microstructure and Mechanical Properties of X80 Pipeline Steel [J]. J Mater Sci Technol, 2010, 26(9): 803-809. |
[7] | Hong Yu,Yugui Zheng,Zhiming Yao. Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass [J]. J Mater Sci Technol, 2009, 25(06): 758-766. |
[8] | Y.Tsunekawa, S.Tamura, M.Okumiya, N.Ishihara. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration [J]. J Mater Sci Technol, 2008, 24(01): 41-44. |
[9] | Xiaoya, Yonggui YAN, Zhenming XU, Jianguo LI. Cavitation Erosion Behavior of as-Welded Cu12Mn8Al3Fe2Ni Alloy [J]. J Mater Sci Technol, 2004, 20(03): 304-306. |
[10] | Xiaohuai XUE, Luhai WU, Bainian QIAN, Jingli LI, Songnian LOU. Effects of Carbon on the CG HAZ Toughness and Transformation of X80 Pipeline Steel [J]. J Mater Sci Technol, 2003, 19(06): 580-582. |
[11] | Suzhen LUO, Yugui ZHENG, Wei LIU, Heming JING, Zhiming YAO, Wei KE. Cavitation Erosion Behavior of CrMnN Duplex Stainless Steel in Distilled Water and 3% NaCl Solution [J]. J Mater Sci Technol, 2003, 19(04): 346-350. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||