J. Mater. Sci. Technol. ›› 2021, Vol. 73: 151-164.DOI: 10.1016/j.jmst.2020.09.031
• Research Article • Previous Articles Next Articles
Dongdong Donga, Cheng Changb,c, Hao Wanga,*(
), Xingchen Yana,d, Wenyou Maa, Min Liua, Sihao Dengd,*(
), Julien Gardanb,c, Rodolphe Bolotd, Hanlin Liaod
Received:2020-06-11
Revised:2020-07-06
Accepted:2020-07-11
Published:2020-09-29
Online:2020-09-29
Contact:
Hao Wang,Sihao Deng
About author:sihao.deng@utbm.fr(S. Deng).1These authors contributed equally to this work.
Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism[J]. J. Mater. Sci. Technol., 2021, 73: 151-164.
Fig. 1. (a) SEM micrograph of the CX powders utilized in this study and the etched cross-sectional figure of a single particle; (b) powder particle size distribution; (c) scanning method of the SLM manufacturing and the CX steel parts fabricated applying SLM technology.
| Composition (wt.%) | ||||||||
|---|---|---|---|---|---|---|---|---|
| Fe | Cr | Ni | Mo | Al | Mn | Si | C | |
| Min. | Bal. | 11.0 | 8.4 | 1.1 | 1.2 | / | / | / |
| Max. | / | 13.0 | 10.0 | 1.7 | 2.0 | 0.4 | 0.4 | 0.05 |
Table 1 Chemical composition of CX steel powders provided by EOS GmbH [24].
| Composition (wt.%) | ||||||||
|---|---|---|---|---|---|---|---|---|
| Fe | Cr | Ni | Mo | Al | Mn | Si | C | |
| Min. | Bal. | 11.0 | 8.4 | 1.1 | 1.2 | / | / | / |
| Max. | / | 13.0 | 10.0 | 1.7 | 2.0 | 0.4 | 0.4 | 0.05 |
| Laser parameters | Value |
|---|---|
| Laser spot diameter | 100 μm |
| Overlaps stripes | 0.12 mm |
| Stripe width | 9.75 mm |
| Hatch distance | 100 μm |
| Layer thickness | 30 μm |
| Laser power | 200, 250, 260, 300, 350 W |
| Scanning speed | 800, 900, 960, 1000, 1060, 1100, 1160, 1200 mm/s |
Table 2 SLM parameters adopted in this work.
| Laser parameters | Value |
|---|---|
| Laser spot diameter | 100 μm |
| Overlaps stripes | 0.12 mm |
| Stripe width | 9.75 mm |
| Hatch distance | 100 μm |
| Layer thickness | 30 μm |
| Laser power | 200, 250, 260, 300, 350 W |
| Scanning speed | 800, 900, 960, 1000, 1060, 1100, 1160, 1200 mm/s |
| Physical parameters | Symbol | Value |
|---|---|---|
| Density | ρ | 7.7 × 103 kg/m3 [ |
| Specific heat capacity | Cp | 470 J/(kg K) [ |
| Melting point | Tm | 1723 K [ |
| Initial temperature | Ti | 353 K |
| Latent heat of fusion | Ll | 2.8 × 105 J/kg [ |
| The absorptivity of stainless steel powders | η | 0.6 [ |
| Laser spot radius | rl | 5 × 10-5 m |
| Radius of the equivalent sphere (as shown in | R | 1.6 × 10-4 m |
| Effective depth of the melting zone (as shown in | H | 4.5 × 10-5 m |
Table 3 Physical properties and manufacturing parameters of the raw materials for theoretical calculation.
| Physical parameters | Symbol | Value |
|---|---|---|
| Density | ρ | 7.7 × 103 kg/m3 [ |
| Specific heat capacity | Cp | 470 J/(kg K) [ |
| Melting point | Tm | 1723 K [ |
| Initial temperature | Ti | 353 K |
| Latent heat of fusion | Ll | 2.8 × 105 J/kg [ |
| The absorptivity of stainless steel powders | η | 0.6 [ |
| Laser spot radius | rl | 5 × 10-5 m |
| Radius of the equivalent sphere (as shown in | R | 1.6 × 10-4 m |
| Effective depth of the melting zone (as shown in | H | 4.5 × 10-5 m |
Fig. 2. (a) Schematic diagram of the heat transfer process of the molten pool in the SLM fabrication; (b) the enlarged view of (a) and the macro appearance of the SLM single track of CX steel (XY plane and XZ plane, respectively).
Fig. 4. (a) Ra of the SLM CX specimens under different linear energy density obtained in further experimental optimization; (b) relationship between Ra and the linear energy density.
Fig. 5. Microstructures in the unetched state of the SLM CX samples manufactured under different linear energy density using large-scale processing parameters.
Fig. 6. (a) Rd of the SLM CX specimens under different linear energy density obtained in further experimental optimization; (b) relationship between Rd and the linear energy density.
Fig. 7. (a) XRD patterns of the SLM CX samples under different linear energy density; (b) enlarged view of α-Fe phase (110) crystal plane; phase distribution of the SLM CX samples under η = 245 J/m detected using EBSD method in (c) XY plane and (d) XZ plane.
Fig. 8. Microstructures of the cross-sections in XY plane of the SLM CX samples under different linear energy density: (a, b, c) microstructures of the SLM CX sample under η = 182 J/m; (d, e, f) microstructures of the SLM CX sample under η = 245 J/m; (g, h, i) microstructures of the SLM CX sample under η = 333 J/m. First row: SEM micrographs before polishing. Second row: OM micrographs after etching. Third row: SEM micrographs after etching.
Fig. 9. EBSD analysis of the SLM CX samples under η = 245 J/m: (a) IPF-Z of the cross-sections in XY plane; (b) grain size distribution in XY plane; (c) IPF-Y of the cross-sections in XZ plane; (d) grain size distribution in XZ plane.
Fig. 10. (a) KAM of the cross-sections in XY plane of the SLM CX samples; (b) local disorientation map plotted according to (a); (c) KAM of the cross-sections in XZ plane of the SLM CX samples; (d) local disorientation map plotted according to (c).
Fig. 11. (a) Slip system of the cross-sections in XY plane of the SLM CX samples; (b) SF map plotted according to (a); (c) slip map of the cross-sections in XZ plane of the SLM CX samples; (d) SF map plotted according to (c).
Fig. 12. Mechanical properties of the SLM CX samples: (a) microhardness and (b) stress-strain curves with macro fracture surface of the SLM CX specimens under different linear energy density.
| Samples | Microhardness (HV0.05) | YS (MPa) | UTS (MPa) | TE (%) |
|---|---|---|---|---|
| η = 182 J/m | 325 ± 3.5 | 892 ± 10.7 | 1033 ± 4.4 | 11.1 ± 0.55 |
| η = 245 J/m | 351 ± 4.8 | 889 ± 7.3 | 1068 ± 5.9 | 15.7 ± 0.26 |
| η = 333 J/m | 342 ± 4.2 | 886 ± 12.3 | 1059 ± 2.8 | 14.7 ± 0.26 |
Table 4 Mechanical properties of the SLM CX samples.
| Samples | Microhardness (HV0.05) | YS (MPa) | UTS (MPa) | TE (%) |
|---|---|---|---|---|
| η = 182 J/m | 325 ± 3.5 | 892 ± 10.7 | 1033 ± 4.4 | 11.1 ± 0.55 |
| η = 245 J/m | 351 ± 4.8 | 889 ± 7.3 | 1068 ± 5.9 | 15.7 ± 0.26 |
| η = 333 J/m | 342 ± 4.2 | 886 ± 12.3 | 1059 ± 2.8 | 14.7 ± 0.26 |
Fig. 13. (a) Fractographies of the SLM CX samples fabricated under different linear energy densities after tensile test: (a, b, c) η = 182 J/m; (d, e, f) η = 245 J/m; (g, h, i) η = 333 J/m. Left column: low magnification images. Middle column: high magnification images. Right column: enlarged views.
| Strengthening contribution (MPa) | SLM CX sample |
|---|---|
| σgb | 236.50 |
| σd | 274.37 |
| σt | 205.72 |
| σp | 164.53 |
| Calculated σYS | 881.12 |
| Experimental σYS | 888.50 |
Table 5 Strength contributions of various strengthening mechanisms for SLM CX sample in as-built state.
| Strengthening contribution (MPa) | SLM CX sample |
|---|---|
| σgb | 236.50 |
| σd | 274.37 |
| σt | 205.72 |
| σp | 164.53 |
| Calculated σYS | 881.12 |
| Experimental σYS | 888.50 |
| [1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
| [2] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21 (2018) 354-361.
DOI URL |
| [3] | K. Cho, K.V. Redkin, M. Hua, C.I. Garcia, A.J. DeArdo, Adv. Steels (2011). |
| [4] | Materials Information Company, ASM Handbook, 1991, pp. 1872-1873. |
| [5] |
P. Liu, A.H. Stigenberg, J.O. Nilsson, Acta Metall. Mater. 43 (1995) 2881-2890.
DOI URL |
| [6] |
N. Guo, M.C. Leu, Front. Mech. Eng. 8 (2013) 215-243.
DOI URL |
| [7] |
X. Yan, S. Yin, C. Chen, R. Jenkins, R. Lupoi, R. Bolot, W. Ma, M. Kuang, H. Liao, J. Lu, M. Liu, Mater. Res. Lett. 7 (2019) 327-333.
DOI URL |
| [8] |
X. Yan, Q. Li, S. Yin, Z. Chen, R. Jenkins, C. Chen, J. Wang, W. Ma, R. Bolot, R. Lupoi, Z. Ren, H. Liao, M. Liu, J. Alloys. Compd. 782 (2019) 209-223.
DOI URL |
| [9] |
V. Livescu, C.M. Knapp, G.T. Gray, R.M. Martinez, B.M. Morrow, B.G. Ndefru, Materialia 1 (2018) 15-24.
DOI URL |
| [10] | X.Y. Zhang, X.C. Yan, G. Fang, M. Liu, Addit. Manuf. 32 (2020), 101015. |
| [11] |
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2 (2015), 041101.
DOI URL |
| [12] |
X. Yan, C. Chen, R. Zhao, W. Ma, R. Bolot, J. Wang, Z. Ren, H. Liao, M. Liu, Surf. Coat. Technol. 371 (2019) 355-365.
DOI URL |
| [13] |
G. Strano, L. Hao, R.M. Everson, K.E. Evans, J. Mater. Process. Technol. 213 (2013) 589-597.
DOI URL |
| [14] |
Z. Chen, X. Yan, S. Yin, L. Liu, X. Liu, G. Zhao, W. Ma, W. Qi, Z. Ren, H. Liao, M. Liu, D. Cai, H. Fang, Mater. Sci. Eng. C 106 (2020), 110289.
DOI URL |
| [15] | V. Mayer, A. Brodbeck, M. Schmid, Surgical Instrument Comprising Electrode Support, U.S. Patent 9,848,939, 2017. |
| [16] | F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, G. Miranda, Addit. Manuf. 16 (2017) 81-89. |
| [17] |
D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Mater. Des. 152 (2018) 88-101.
DOI URL |
| [18] | W.C. Cimino, Ultrasonic Device and Method for Tissue Coagulation, U.S. Patent 7, 361, 172, 2008. |
| [19] |
X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, M. Liu, J. Alloys. Compd. 764 (2018) 1056-1071.
DOI URL |
| [20] | M. Mitusina, G. Peters, Angled Rotary Tissue Cutting Instrument with Flexible Inner Member, U.S. Patent 6,533,749 B1, 2003. |
| [21] |
Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, J. Mater. Sci. Technol. 35 (2019) 388-394.
DOI |
| [22] |
K. Abd-Elghany, D.L. Bourell, Rapid Prototyp. J. 18 (2012) 420-428.
DOI URL |
| [23] | S. Yin, C. Chen, X. Yan, X. Feng, R. Jenkins, P. O’Reilly, M. Liu, H. Li, R. Lupoi, Addit. Manuf. 22 (2018) 592-600. |
| [24] | E. GmbH, Material Data Sheet-FlexLine EOS StainlessSteel CX, 2019 https://www.eos.info. |
| [25] |
C. Chang, X. Yan, R. Bolot, J. Gardan, S. Gao, J. Mater. Sci. 55 (2020) 8303-8316.
DOI URL |
| [26] |
X. Yan, C. Chen, C. Chang, D. Dong, R. Zhao, R. Jenkins, J. Wang, Z. Ren, M. Liu, H. Liao, R. Lupoi, Mater. Sci. Eng. A 781 (2020), 139227.
DOI URL |
| [27] |
T.J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, R.P. Nogueira, Rem Rev. Esc. Minas 66 (2013) 173-178.
DOI URL |
| [28] | W.M. Steen, J. Mazumder, Laser Material Processing, Springer Science & Business Media, 2010. |
| [29] |
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, J. Mater. Process. Technol. 213 (2013) 606-613.
DOI URL |
| [30] |
L. Han, F.W. Liou, S. Musti, J. Heat Transfer 127 (2005) 1005-1014.
DOI URL |
| [31] | L. Wang, S. Felicelli, Mater. Sci. Eng.A 435-436 (2006) 625-631. |
| [32] | UNS S13800 (PH 13-8 Mo, XM-13) Stainless Steel, MakeItFrom.Com, 2018. https://www.makeitfrom.com/material-properties/UNS-S13800-PH-13-8-Mo-XM-13-Stainless-Steel. |
| [33] |
C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Appl. Opt. 54 (2015) 2477-2482.
DOI PMID |
| [34] |
X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, J. Mater. Process. Technol. 222 (2015) 33-42.
DOI URL |
| [35] |
W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214 (2014) 2915-2925.
DOI URL |
| [36] |
A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, S.C. Veldhuis, Materials (Basel) 12 (2018) 12-36.
DOI URL |
| [37] | Z. Fuqian, X. Ming, L. Jianliang, L. Xianyong, G. Weiming, S. An, D. Zhongmin, Mater. Sci. Eng. A 304 (2001) 579-582. |
| [38] |
C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, Mater. Des. 118 (2017) 66-74.
DOI URL |
| [39] |
P. Krakhmalev, I. Yadroitsava, G. Fredriksson, I. Yadroitsev, Mater. Des. 87 (2015) 380-385.
DOI URL |
| [40] |
J. Haubrich, J. Gussone, P. Barriobero-Vila, P. Kürnsteiner, E.A. Jägle, D. Raabe, N. Schell, G. Requena, Acta Mater. 167 (2019) 136-148.
DOI |
| [41] |
J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Acta Mater. 61 (2013) 4939-4952.
DOI URL |
| [42] |
T. Liu, Z. Cao, H. Wang, G. Wu, J. Jin, W. Cao, Scr. Mater. 178 (2020) 285-289.
DOI URL |
| [43] |
Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723 (2018) 212-220.
DOI URL |
| [44] |
E.V. Pereloma, A. Shekhter, M.K. Miller, S.P. Ringer, Acta Mater. 52 (2004) 5589-5602.
DOI URL |
| [45] |
P. Peng, K. Wang, W. Wang, P. Han, T. Zhang, Q. Liu, S. Zhang, H. Wang, K. Qiao, J. Liu, Mater. Charact. 163 (2020), 110283.
DOI URL |
| [46] |
H.H. Jin, E. Ko, J. Kwon, S.S. Hwang, C. Shin, J. Nucl. Mater. 470 (2016) 155-163.
DOI URL |
| [47] |
T. Gladman, Mater. Sci. Technol. 15 (2004) 30-36.
DOI URL |
| [48] |
L. Proville, B. Bakó, Acta Mater. 58 (2010) 5565-5571.
DOI URL |
| [49] |
L. Sun, T.H. Simm, T.L. Martin, S. McAdam, D.R. Galvin, K.M. Perkins, P.A.J. Bagot, M.P. Moody, S.W. Ooi, P. Hill, M.J. Rawson, H.K.D.H. Bhadeshia, Acta Mater. 149 (2018) 285-301.
DOI URL |
| [50] |
A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165.
DOI URL |
| [51] |
R.D. Noebe, R.R. Bowman, M.V. Nathal, Int. Mater. Rev. 38 (1993) 193-232.
DOI URL |
| [52] |
E. Povoden-Karadeniz, E. Kozeschnik, ISIJ Int. 52 (2012) 610-615.
DOI URL |
| [53] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, C.T. Liu, Scr. Mater. 87 (2014) 45-48.
DOI URL |
| [54] |
X. Yan, C. Chang, D. Dong, S. Gao, W. Ma, M. Liu, H. Liao, S. Yin, Mater. Sci. Eng. A 789 (2020) 139615.
DOI URL |
| [1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [2] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
| [3] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [4] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
| [5] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
| [6] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [7] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
| [8] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
| [9] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
| [10] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
| [11] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
| [12] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
| [13] | Yao Jiang, Yuehui He, Haiyan Gao. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 89-104. |
| [14] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
| [15] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
