J. Mater. Sci. Technol. ›› 2021, Vol. 74: 89-104.DOI: 10.1016/j.jmst.2020.10.007
• Invited Review • Previous Articles Next Articles
Yao Jiang*(), Yuehui He, Haiyan Gao
Received:
2020-06-15
Revised:
2020-08-13
Accepted:
2020-09-04
Published:
2021-05-30
Online:
2020-10-18
Contact:
Yao Jiang
About author:
*E-mail address: jiangyao@csu.edu.cn (Y. Jiang).Yao Jiang, Yuehui He, Haiyan Gao. Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties[J]. J. Mater. Sci. Technol., 2021, 74: 89-104.
Fig. 1. Schematic diagram of preparation mechanism of porous intermetallics based on the physical process of pore formation. (a) Pore formation from the interstitial space between particles. (b) Pore formation from removal of space holder.
Fig. 2. Pore structure and properties of porous intermetallic compounds based on physical process mechanism of pore formation. (a) SEM image of porous Fe20Cr7Al with pores derived from interstitial space between particles [49]. (b) Permeability performance of porous Fe20Cr7Al compared with that of reactively synthesized porous Fe-Al-Cr intermetallic [49]. (c) Pore morphology of cross section of porous Ni3Al with macro-pores derived from the removal of space holder [56]. (d) Roughness factor of porous Ni3Al [56].
Fig. 3. Schematic diagram of combustion synthesis mechanism of porous intermetallics based on the violent chemical reaction process to form pores. a) Pore formation from the CS procedure and the interstitial space between particles. (b) Addition of space holder or foaming agent to increase the porosity.
Fig. 4. Morphology of pore structure formed in the CS process. (a) Microscopic image of cross-section pore structure of porous Fe-40Al synthesized by the TE reaction, and inset: fracture surface microstructure [71]. (b) SEM image of pore structure of porous Ti5Si3/TiAl composite prepared by the SHS process using TiH2 as pore-forming agent, and inset: macrograph of porous composite [79].
Fig. 5. Schematic diagram of the RS mechanism of porous intermetallics based on the Kirkendall effect, in which the sintering procedure includes 2 stages: asymmetric diffusion at medium temperature (arrow marks: movement direction of fast diffusing element) and composition homogenization at high temperature.
Fig. 6. Stage characteristics of pore structure of reactively synthesized porous intermetallic compounds. (a) Microstructure of porous Fe-Al compact sintered at medium temperature of 600 °C [102]. (b) Pore structure of porous FeAl intermetallic after composition homogenization stage at high temperature of 1200 °C [102]. (c) Microstructure of porous Fe-Si compact sintered at medium temperature of 800 °C [27]. (d) Pore structure of fracture surface of porous FeSi intermetallic sintered at high temperature of 1150 °C [27].
Fig. 7. Schematic diagram of reactive synthesis mechanism of porous intermetallics based on the phase transition process, in which pores are formed during the phase transition procedure due to the volume shrinkage of resultants.
Fig. 8. Pore structure of porous intermetallics prepared through the RS process based on the pore formation mechanism of the phase transition effect. (a) SEM image of pore structure of porous Ti3SiC2 MAX phase, and inset: laminate microstructure [108]. (b) Microscopic structure of porous Ti3(Si,Al)C2 quaternary intermetallic, and inset: nanolaminate microstructure of MAX phase [111].
Fig. 9. Pore structure morphology of some typical porous intermetallics and alloys. (a) Optical micrograph of the section of porous Ni3Al with the pore formation through the Kirkendall effect [56]. (b) SEM image of the section of reactively synthesized porous FeAl [97]. (c) SEM image of the fracture surface of porous Ti3SiC2 with the pore formation by the phase transition process [114]. (d) 3D morphology of porous Ni-Cu prepared through the Kirkendall effect by 3D X-ray diffraction microscope (Xradia VersaXRM-500) [104].
Main phase in porous material | Composition | Maximum aperture/μm | Average aperture/μm | Gas permeability/m3⋅ m-2⋅kPa-1⋅ h-1 | Overall porosity/% | Open porosity/% | Sintering process for pore formation | Reference |
---|---|---|---|---|---|---|---|---|
TiAl | Ti-35 wt.%Al | 41.8 | 24.2 | 422.3 | 46 | RS | [ | |
Ti3Al | Ti-20 wt.%Al | 18.7 | ~198 | 36.5 | 30.5 | RS | [ | |
TiAl3 | Ti-60 wt.%Al | 36.2 | 58.7 | RS | [ | |||
Ti5Si3 | Ti:Si = 5:(4-2) | 33-65 | 33-61 | 17-55 | CS | [ | ||
FeAl | Fe-(40-60)at.%Al | 20-25 | 54-62 | TE | [ | |||
FeAl | Fe-25 wt.%Al | 12.6-19.0 | 9.0-40.8 | ~35-48.5 | RS | [ | ||
FeAl-Cr | (Fe-25 wt.% Al)-20 wt.%Cr | 2.2-42.2 | >35.5 | RS | [ | |||
FeAl-Si | (Fe-25 wt.% Al)-(0-5)wt.%Si | 27.9-35.7 | 38.14- 50.12 | RS | [ | |||
FeSi | Fe-50at.%Si | 14.1 | 92.20 | 53.8 | RS | [ | ||
NiAl | Ni-50at.%Al | 25-50 | CS with pore forming agent | [ | ||||
NiAl | Ni-50at.%Al | ~54 | 1100 | 50 | RS | [ | ||
Ni3Al | Ni-14 wt.%Al | 10.2 | 128 | 38 | RS | [ | ||
Ni3Al | Ni-14 wt.%Al | 12.6-92.0 | 166-1466 | 50-60 | RS with space holder | [ | ||
NbAl3 | Nb-75at.% Al | 65.7 | TE | [ | ||||
Ti3SiC2 | TiH2:Si:C = 3:1.2:2 | 6.9 | 18.36 | 48 | RS | [ | ||
Ti3AlC2 | TiH2:Al:C = 3:1.2:2 | 5-5.5 | 4.5-5 | 18.81 | 47.23 | 43.62 | RS | [ |
Ti3(Si,Al)C2 | Ti:Si:Al:C = 3:0.6:0.6:2 | 7.1 | 4.4 | 16.8 | 44.0 | RS | [ |
Table 1 Pore structure parameters of some typical porous intermetallics.
Main phase in porous material | Composition | Maximum aperture/μm | Average aperture/μm | Gas permeability/m3⋅ m-2⋅kPa-1⋅ h-1 | Overall porosity/% | Open porosity/% | Sintering process for pore formation | Reference |
---|---|---|---|---|---|---|---|---|
TiAl | Ti-35 wt.%Al | 41.8 | 24.2 | 422.3 | 46 | RS | [ | |
Ti3Al | Ti-20 wt.%Al | 18.7 | ~198 | 36.5 | 30.5 | RS | [ | |
TiAl3 | Ti-60 wt.%Al | 36.2 | 58.7 | RS | [ | |||
Ti5Si3 | Ti:Si = 5:(4-2) | 33-65 | 33-61 | 17-55 | CS | [ | ||
FeAl | Fe-(40-60)at.%Al | 20-25 | 54-62 | TE | [ | |||
FeAl | Fe-25 wt.%Al | 12.6-19.0 | 9.0-40.8 | ~35-48.5 | RS | [ | ||
FeAl-Cr | (Fe-25 wt.% Al)-20 wt.%Cr | 2.2-42.2 | >35.5 | RS | [ | |||
FeAl-Si | (Fe-25 wt.% Al)-(0-5)wt.%Si | 27.9-35.7 | 38.14- 50.12 | RS | [ | |||
FeSi | Fe-50at.%Si | 14.1 | 92.20 | 53.8 | RS | [ | ||
NiAl | Ni-50at.%Al | 25-50 | CS with pore forming agent | [ | ||||
NiAl | Ni-50at.%Al | ~54 | 1100 | 50 | RS | [ | ||
Ni3Al | Ni-14 wt.%Al | 10.2 | 128 | 38 | RS | [ | ||
Ni3Al | Ni-14 wt.%Al | 12.6-92.0 | 166-1466 | 50-60 | RS with space holder | [ | ||
NbAl3 | Nb-75at.% Al | 65.7 | TE | [ | ||||
Ti3SiC2 | TiH2:Si:C = 3:1.2:2 | 6.9 | 18.36 | 48 | RS | [ | ||
Ti3AlC2 | TiH2:Al:C = 3:1.2:2 | 5-5.5 | 4.5-5 | 18.81 | 47.23 | 43.62 | RS | [ |
Ti3(Si,Al)C2 | Ti:Si:Al:C = 3:0.6:0.6:2 | 7.1 | 4.4 | 16.8 | 44.0 | RS | [ |
Fig. 10. Linear relationship between the pore structure parameters and the preparation parameters in some typical reactively synthesized porous intermetallics. (a) Effect of powder size on the pore structure parameters of porous FeSi intermetallics [27]. (b) Relationship between the open porosity and Al content in porous Fe-Al intermetallics [98]. (c) Relationship between the permeability and cold pressing pressure in porous FeAl intermetallics [102]. (d) Relationship between tortuosity factor and powder size in porous Ti3(Si,Al)C2 compound [113].
Fig. 11. Material properties of typical porous intermetallics. (a) Current-potential curves for porous Ni3Al-Mo and Ni3Al intermetallic HER electrodes after different electrolysis time [44]. (b) Oxidation and sulfidation kinetics curves at 600 °C of porous FeAl and FeAl-Cr intermetallics [41]. (c) Potentiodynamic polarization curves for porous Ti3SiC2 and TiAl intermetallics in NaCl solution [114]. (d) Relationship curves between the bending strength and the average pore size of porous Ti3SiC2 [108].
[1] |
M.J. Duarte, J. Klemm, S.O. Klemm, K.J.J. Mayrhofer, M. Stratmann, S. Borodin, A.H. Romero, M. Madinehei, D. Crespo, J. Serrano, S.S.A. Gerstl, P.P. Choi, D. Raabe, F.U. Renner, Science 341 (2013) 372-376.
DOI URL |
[2] |
A. Orthacker, G. Haberfehlner, J. Taendl, M.C. Poletti, B. Sonderegger, G. Kothleitner, Nat. Mater. 17 (2018) 1101-1109.
DOI PMID |
[3] |
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 32 (2020), 1806326.
DOI URL |
[4] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. St. John, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[5] |
Y. Zhang, A. Feng, S. Qu, J. Shen, D. Chen, J. Mater. Sci. Technol. 44 (2020) 140-147.
DOI URL |
[6] |
J. Jing, J. He, H. Guo, J. Mater. Sci. Technol. 35 (2019) 2038-2047.
DOI |
[7] |
E.S. Machlin, Acta Metall. 22 (1974) 1433-1442.
DOI URL |
[8] |
S. Liu, S. Liu, D. Li, T.M. Drwenski, W. Xue, H. Dang, S. Wang, Phys. Chem. Chem. Phys. 14 (2012) 11160-11166.
DOI URL |
[9] |
Y.H. He, Y. Jiang, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, P.K. Liaw, Adv. Mater. 19 (2007) 2102-2106.
DOI URL |
[10] |
X. Jiao, X. Ren, X. Wang, S. Wang, P. Feng, J. Wang, Intermetallics 95 (2018) 144-149.
DOI URL |
[11] |
X. Jiao, P. Feng, Y. Liu, X. Cai, J. Wang, T. Czujko, J. Mater. Res. 33 (2018) 2680-2688.
DOI URL |
[12] |
X. Jiao, P. Feng, J. Wang, X. Ren, F. Akhtar, J. Alloys. Compd. 811 (2019), 152056.
DOI URL |
[13] |
P. Broz, G. Rogl, X. Yan, M. Premović, V. Soprunyuk, P. Heinrich, E. Bauer, W. Schranz, P. Rogl, J. Alloys. Compd. 740 (2018) 647-659.
DOI URL |
[14] | Y. Hou, Y. Jiang, T. Lei, Y. He, J. Cent. South Univ. South Univ. Technol. 18 (2011) 966-971. |
[15] |
M. Higashi, S. Momono, K. Kishida, N.L. Okamoto, H. Inui, Acta Mater. 161 (2018) 161-170.
DOI URL |
[16] |
X. Liu, H. Zhang, Y. Jiang, Y. He, Mater. Des. 79 (2015) 94-98.
DOI URL |
[17] | V. Gunther, Y. Yasenchuk, T. Chekalkin, E. Marchenko, S. Gunther, G. Baigonakova, V. Hodorenko, K. Ji-hoon, S. Weiss, A. Obrosov, Adv. PowderTechnol. 30 (2019) 673-680. |
[18] |
Y. Yasenchuk, V. Gunther, E. Marchenko, T. Chekalkin, G. Baigonakova, V. Hodorenko, S. Gunther, J.H. Kang, S. Weiss, A. Obrosov, Mater. Res. Express 6 (2019) 056522.
DOI URL |
[19] |
E. Marchenko, Y. Yasenchuk, S. Gunther, G. Baigonakova, V. Gunther, T. Chekalkin, S. Weiss, A. Obrosov, K. Dubovikov, Mater. Res. Express 6 (2019), 1165b1.
DOI URL |
[20] |
K. Karczewski, W.J. Stepniowski, S. Jozwiak, Mater. Lett. 178 (2016) 268-271.
DOI URL |
[21] | D. Henkel, Adv. Mater. Process 169 (2011) 44-46. |
[22] |
M. Zhao, K. Yoshimi, K. Maruyama, K. Yubuta, Acta Mater. 64 (2014) 382-390.
DOI URL |
[23] |
H. Zhang, W. Xie, H. Gao, W. Shen, Y. He, J. Alloys. Compd. 735 (2018) 1435-1438.
DOI URL |
[24] |
B. Duan, T. Shen, D. Wang, Powder Technol. 344 (2019) 169-176.
DOI URL |
[25] |
P. Sun, B. Wei, D. Menzel, F. Steglich, Phys. Rev. B 90 (2014), 245146.
DOI URL |
[26] | J.F. Wang, Y.H. He, Y. Jiang, H.Y. Gao, J.S. Yang, L. Gao, J. Wuhan Univ. Technol. Sci Ed 31 (2016) 242-247. |
[27] |
B. Shen, Y. He, Z. Wang, L. Yu, Y. Jiang, H. Gao, J. Alloys. Compd. 826 (2020), 154227.
DOI URL |
[28] |
W.F. Simanullang, H. Itahara, N. Takahashi, S. Kosaka, K. Shimizu, S. Furukawa, Chem. Commun. (Camb.) 55 (2019) 13999-14002.
DOI URL |
[29] |
H. Itahara, W.F. Simanullang, N. Takahashi, S. Kosaka, S. Furukawa, Inorg. Chem. 58 (2019) 5406-5409.
DOI URL |
[30] |
K. Gong, Z. Zhou, P.W. Shum, H. Luo, Z. Tian, C. Li, Wear 270 (2011) 195-203.
DOI URL |
[31] |
L. Wu, Y. Jiang, H.X. Dong, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Intermetallics 19 (2011) 1759-1765.
DOI URL |
[32] |
D. Ma, Y. Wang, Y. Li, R.Y. Umetsu, S. Ou, K. Yubuta, W. Zhang, J. Mater. Sci. Technol. 36 (2020) 128-133.
DOI URL |
[33] |
Q. Zheng, Z.R. Zhang, J. Du, L.L. Lin, W.X. Xia, J. Zhang, B.R. Bian, J.P. Liu, J. Mater. Sci. Technol. 35 (2019) 560-567.
DOI |
[34] | H. Xing, A. Dong, J. Huang, J. Zhang, B. Sun, J. Mater. Sci. Technol. 34 (2018) 620-626. |
[35] |
J. Wang, Acta Mater. 46 (1998) 2663-2674.
DOI URL |
[36] |
S. Furukawa, A. Suga, T. Komatsu, Chem. Commun. (Camb.) 50 (2014) 3277-3280.
DOI URL |
[37] |
S. Liu, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Nanoscale 10 (2018) 11365-11374.
DOI URL |
[38] |
J. Lou, F. Ye, M. Li, W.O. Soboyejo, J. Mater. Sci. 37 (2002) 3023-3034.
DOI URL |
[39] |
G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Nat. Mater. 15 (2016) 876-881.
DOI URL |
[40] | Y. Jiang, Y. He, X. Liu, H. Gao, Mater. Res. Express 7 (2020), 026511. |
[41] |
H. Zhang, X. Liu, Y. Jiang, L. Gao, L. Yu, N. Lin, Y. He, C.T. Liu, J. Hazard. Mater. 338 (2017) 364-371.
DOI URL |
[42] |
X. Liu, Q. Zhang, H. Zhang, Y. Jiang, Y. He, J. Mater. Sci. 51 (2016) 2594-2597.
DOI URL |
[43] |
L. Wan, Z. Wang, X. Wei, J. Li, G. Zhong, X. Duan, F. He, Y. Jiang, D. Wang, Trans. Nonferrous Met. Soc. China 22 (2012) 3156-3160.
DOI URL |
[44] |
L. Wu, Y. He, T. Lei, B. Nan, N. Xu, J. Zou, B. Huang, C.T. Liu, Energy 67 (2014) 19-26.
DOI URL |
[45] |
H. Dong, T. Lei, Y. He, N. Xu, B. Huang, C.T. Liu, Int. J. Hydrogen Energy 36 (2011) 12112-12120.
DOI URL |
[46] |
L. Wu, Y. Zeng, Y.F. Xiao, Y.H. He, Powder Metall. 57 (2014) 387-393.
DOI URL |
[47] |
L. Wu, Y. He, T. Lei, B. Nan, N. Xu, J. Zou, B. Huang, C.T. Liu, Mater. Chem. Phys. 141 (2013) 553-561.
DOI URL |
[48] |
L. Wu, Y. He, T. Lei, B. Nan, N. Xu, J. Zou, B. Huang, C.T. Liu, Energy 63 (2013) 216-224.
DOI URL |
[49] |
H. Zhang, H. Gao, X. Liu, H. Yu, L. Wang, Y. Jiang, L. Gao, L. Yu, Y. He, X. Chen, L. Zhang, G. Zheng, Sep. Purif. Technol. 220 (2019) 152-161.
DOI URL |
[50] |
D.V. Dudina, B.B. Bokhonov, E.A. Olevsky, Materials 12 (2019) 541.
DOI URL |
[51] |
K. Karczewski, W.J. Stepniowski, M. Salerno, Materials 10 (2017) 746.
DOI URL |
[52] |
K. Karczewski, W.J. Stępniowski, M. Chojnacki, S. Jóźwiak, Mater. Lett. 164 (2016) 32-34.
DOI URL |
[53] |
M. Łazinska, T. Durejko, S. Lipinski, W. Polkowski, T. Czujko, R.A. Varin, Mater. Sci. Eng. A 636 (2015) 407-414.
DOI URL |
[54] |
H. Du, X.W. Liu, J. Li, P. Tao, J. Jiang, R. Sun, Z.T. Fan, Mater. Manuf. Proc. 31 (2016) 725-732.
DOI URL |
[55] |
A.E.W. Jarfors, D.L. Butler, K.L.S. Goi, J. Alloys. Compd. 594 (2014) 202-210.
DOI URL |
[56] |
L. Wu, Y. He, Y. Jiang, Y. Zeng, Y. Xiao, B. Nan, Trans. Nonferrous Met. Soc. China 24 (2014) 3509-3516.
DOI URL |
[57] |
L. Zhang, Y.Q. Zhang, Y.H. Jiang, R. Zhou, J. Alloys. Compd. 644 (2015) 513-522.
DOI URL |
[58] |
H. Ran, J. Niu, B. Song, X. Wang, P. Feng, J. Wang, Y. Ge, F. Akhtar, J. Alloys. Compd. 612 (2014) 337-342.
DOI URL |
[59] |
H. Cui, L. Cao, Y. Chen, J. Wu, J. Porous Mater. 19 (2012) 415-422.
DOI URL |
[60] | P. Bassani, S. Panseri, A. Ruffini, M. Montesi, M. Ghetti, C. Zanotti, A. Tampieri, A. Tuissi, J. Mater. Sci. 25 (2014) 2277-2285. |
[61] |
X. Cai, Y. Liu, P. Feng, X. Jiao, L. Zhang, J. Wang, J. Alloys. Compd. 732 (2018) 443-447.
DOI URL |
[62] |
Q. Shi, B. Qin, P. Feng, H. Ran, B. Song, J. Wang, Y. Ge, RSC Adv. 5 (2015) 46339-46347.
DOI URL |
[63] |
K. Karczewski, W.J. Stepniowski, M. Salerno, Materials 11 (2018) 621.
DOI URL |
[64] |
K. Karczewski, W.J. Stepniowski, P. Kaczor, S. Jozwiak, Materials 8 (2015) 2217-2226.
DOI URL |
[65] |
X. Cai, Y. Liu, X. Wang, X. Jiao, J. Wang, P. Feng, F. Akhtar, JOM 70 (2018) 2173-2178.
DOI URL |
[66] |
Z. Li, X. Cai, X. Ren, X. Kang, X. Wang, X. Jiao, P. Feng, Combust. Sci. Technol. 192 (2020) 486-492.
DOI URL |
[67] |
X. Jiao, X. Wang, X. Kang, P. Feng, L. Zhang, F. Akhtar, Mater. Manuf. Process 32 (2017) 489-494.
DOI URL |
[68] |
P. Novak, L. Mejzlikova, A. Michalcova, J. Capek, P. Beran, D. Vojtech, Intermetallics 42 (2013) 85-91.
DOI URL |
[69] |
Z. Li, O.J. Ilegbusi, J. Mater. Eng. Perform. 21 (2012) 1193-1198.
DOI URL |
[70] |
Y. Liu, Z. Sun, X. Cai, X. Jiao, P. Feng, Trans. Nonferrous Met. Soc. China 28 (2018) 1141-1148.
DOI URL |
[71] |
X. Cai, Y. Liu, X. Wang, X. Jiao, J. Wang, F. Akhtar, P. Feng, Metall. Mater. Trans. A 49 (2018) 3683-3691.
DOI URL |
[72] |
X. Kang, C. Yang, H. Zhang, Y. Du, P. Feng, Mater. Lett. 217 (2018) 174-176.
DOI URL |
[73] |
X. Cai, R. Xu, X. Ren, X. Kang, P. Feng, Mater. Sci. Technol. 35 (2019) 1624-1631.
DOI URL |
[74] |
Y. Shu, A. Suzuki, N. Takata, M. Kobashi, J. Mater. Process. Technol. 264 (2019) 182-189.
DOI URL |
[75] |
X. Jiao, X. Wang, X. Kang, P. Feng, L. Zhang, J. Wang, F. Akhtar, Mater. Lett. 181 (2016) 261-264.
DOI URL |
[76] |
Z. Wang, X. Jiao, P. Feng, X. Wang, Z. Liu, F. Akhtar, Intermetallics 68 (2016) 95-100.
DOI URL |
[77] |
H. Kalantari, M. Adeli, M.R. Aboutalebi, Metall. Mater. Trans. B 50 (2019) 2566-2573.
DOI |
[78] |
A. Maznoy, A. Kirdyashkin, V. Kitler, N. Pichugin, V. Salamatov, K. Tcoi, J. Alloys. Compd. 792 (2019) 561-573.
DOI URL |
[79] |
C.L. Yeh, W.E. Sun, J. Alloys. Compd. 669 (2016) 66-71.
DOI URL |
[80] |
Y. Liu, X. Cai, Z. Sun, X. Jiao, F. Akhtar, J. Wang, P. Feng, Vacuum 149 (2018) 225-230.
DOI URL |
[81] |
X. Cai, X. Bo, P. Feng, X. Ren, X. Kang, C. Xu, P. Zhang, J. Mater. Res. Technol. 8 (2019) 3188-3197.
DOI URL |
[82] | E. Kirkendall, L. Thomassen, C. Upthegrove, Trans. Am. Inst. Min. Metall. Eng. 133 (1939) 186-203. |
[83] |
Y. Jiang, Y. He, C.T. Liu, Intermetallics 93 (2018) 217-226.
DOI URL |
[84] |
Y. Jiang, Y. He, Mater. Res. Express 6 (2019), 1165g5.
DOI URL |
[85] |
H.Y. Gao, Y.H. He, J. Zou, P.Z. Shen, Y. Jiang, C.T. Liu, Powder Metall. 58 (2015) 197-201.
DOI URL |
[86] |
F. Wang, Y.F. Liang, S.L. Shang, Z.K. Liu, J.P. Lin, Mater. Sci. Technol. 31 (2015) 1388-1391.
DOI URL |
[87] |
F. Yang, L. Zhang, J. Lin, Y. Liang, Y. He, S. Shang, Z. Liu, Intermetallics 33 (2013) 2-7.
DOI URL |
[88] |
Y. Liang, F. Yang, L. Zhang, J. Lin, S. Shang, Z. Liu, Intermetallics 44 (2014) 1-7.
DOI URL |
[89] |
Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Intermetallics 16 (2008) 327-332.
DOI URL |
[90] |
X. Jiao, X. Wang, P. Feng, Y. Liu, L. Zhang, F. Akhtar, Acta Metall. Sin. 31 (2018) 440-448.
DOI URL |
[91] |
X. Liu, Y. Jiang, H. Zhang, Y. He, Trans. Nonferrous Met. Soc. China 27 (2017) 584-590.
DOI URL |
[92] |
H. Jiang, S. Ye, R. Ma, P. Yu, Intermetallics 105 (2019) 48-55.
DOI |
[93] |
H.X. Dong, Y. Jiang, Y.H. He, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, P.K. Liaw, Mater. Chem. Phys. 122 (2010) 417-423.
DOI URL |
[94] |
H.X. Dong, Y.H. He, Y. Jiang, L. Wu, J. Zou, N.P. Xu, B.Y. Huang, C.T. Liu, Mater. Sci. Eng. A 528 (2011) 4849-4855.
DOI URL |
[95] |
G. Chen, P. Cao, N. Edmonds, Mater. Sci. Eng. A 582 (2013) 117-125.
DOI URL |
[96] |
W. Xie, H.Y. Gao, Y.H. He, B.N. Xie, C.T. Liu, Powder Metall. 59 (2016) 308-313.
DOI URL |
[97] |
H. Gao, Y. He, J. Zou, N. Xu, C.T. Liu, Intermetallics 32 (2013) 423-428.
DOI URL |
[98] |
P.Z. Shen, H.Y. Gao, M. Song, Y.H. He, J. Mater. Eng. Perform. 22 (2013) 3959-3966.
DOI URL |
[99] |
H. Gao, W. Xie, H. Zhang, W. Shen, Y. He, Mater. High Temp. 36 (2019) 1-8.
DOI URL |
[100] |
S. Ye, H. Hao, W. Mo, K. Yu, L. Liu, C. Deng, P. Yu, J. Alloys. Compd. 673 (2016) 399-404.
DOI URL |
[101] |
G. Hao, H. Wang, X. Li, Mater. Lett. 142 (2015) 11-14.
DOI URL |
[102] |
H.Y. Gao, Y.H. He, P.Z. Shen, Y. Jiang, C.T. Liu, Adv. Powder Technol. 26 (2015) 882-886.
DOI URL |
[103] |
B. Shen, Y. He, W. Li, Z. Wang, L. Yu, Y. Jiang, X. Liu, J. Kang, H. Gao, N. Lin, Mater. Des. 191 (2020), 108645.
DOI URL |
[104] |
L. Yu, Y. Jiang, Y. He, X. Liu, H. Zhang, Mater. Chem. Phys. 163 (2015) 355-361.
DOI URL |
[105] |
L. Yu, Y. Jiang, Y. He, C.T. Liu, J. Alloys. Compd. 638 (2015) 7-13.
DOI URL |
[106] |
L. Yu, T. Lei, B. Nan, Y. Jiang, Y. He, C.T. Liu, Energy 97 (2016) 498-505.
DOI URL |
[107] |
H. Zhang, X. Liu, Y. Jiang, Materials 10 (2017) 163.
DOI URL |
[108] |
Y. Jiang, X. Liu, H. Gao, Y. He, Crystals 10 (2020) 82.
DOI URL |
[109] |
J. Yang, C. Liao, J. Wang, Y. Jiang, Y. He, Ceram. Int. 40 (2014) 4643-4648.
DOI URL |
[110] |
J. Yang, C. Liao, J. Wang, Y. Jiang, Y. He, Ceram. Int. 40 (2014) 6739-6745.
DOI URL |
[111] |
Z. Wang, H. Zhang, X. Liu, Y. Jiang, H. Gao, Y. He, Mater. Chem. Phys. 208 (2018) 85-90.
DOI URL |
[112] |
Z. Wang, Y. Jiang, Y. He, Ceram. Int. 45 (2019) 15482-15487.
DOI URL |
[113] |
Z. Wang, Y. Jiang, X. Liu, Y. He, Ceram. Int. 46 (2020) 576-583.
DOI URL |
[114] |
Y. Jiang, Y. He, Mater. Corros. 71 (2020) 54-59.
DOI |
[115] |
X. Liu, Y. Jiang, H. Zhang, L. Yu, J. Kang, Y. He, J. Eur. Ceram. Soc. 35 (2015) 1349-1353.
DOI URL |
[116] |
H. Gao, Y. He, J. Zou, N. Xu, C.T. Liu, Trans. Nonferrous Met. Soc. China 22 (2012) 2179-2183.
DOI URL |
[117] |
Y. Liu, X. Cai, Z. Sun, H. Zhang, F. Akhtar, T. Czujko, P. Feng, Adv. Eng. Mater. 21 (2019), 1801110.
DOI URL |
[118] |
Z.M. Sun, A. Murugaiah, T. Zhen, A. Zhou, M.W. Barsoum, Acta Mater. 53 (2005) 4359-4366.
DOI URL |
[119] |
A.G. Zhou, M. Fraczkiewicz, M.W. Barsoum, Acta Mater. 54 (2006) 5261-5270.
DOI URL |
[120] |
D. Wang, G. He, Y. Tian, N. Ren, J. Ni, W. Liu, X. Zhang, J. Mater. Sci. Technol. 44 (2020) 160-170.
DOI URL |
[121] |
Y.W. Kim, J. Alloys. Compd. 821 (2020), 153220.
DOI URL |
[1] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[2] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[3] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[4] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[5] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[6] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[7] | Anil Kunwar, Lili An, Jiahui Liu, Shengyan Shang, Peter Råback, Haitao Ma, Xueguan Song. A data-driven framework to predict the morphology of interfacial Cu6Sn5 IMC in SAC/Cu system during laser soldering [J]. J. Mater. Sci. Technol., 2020, 50(0): 115-127. |
[8] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Fan Yang, Yihan Zhou, Naifang Zhang, Sheng Cao, Liao Yu, Jianguo Li. Intergrowth mechanism and morphology prediction of faceted Al3Ni formed during solidification by a spatial geometric model [J]. J. Mater. Sci. Technol., 2020, 54(0): 40-47. |
[9] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[10] | Qian Yan, Bo Song, Yusheng Shi. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting [J]. J. Mater. Sci. Technol., 2020, 41(0): 199-208. |
[11] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Xuan Ge, Sheng Cao, Siyu Sun, Tianxing Yang, Mingxu Xia, Jianguo Li. In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography [J]. J. Mater. Sci. Technol., 2019, 35(7): 1388-1392. |
[12] | Qun Luo, Kang Li, Qian Li. Thermodynamic investigation of phase equilibria in Al-Si-V system [J]. J. Mater. Sci. Technol., 2018, 34(9): 1592-1601. |
[13] | Zi-You Ding, Lan-Yue Cui, Rong-Chang Zeng, Yan-Bin Zhao, Shao-Kang Guan, Dao-Kui Xu, Cun-Guo Lin. Exfoliation corrosion of extruded Mg-Li-Ca alloy [J]. J. Mater. Sci. Technol., 2018, 34(9): 1550-1557. |
[14] | Li-Yin Gao, Hao Zhang, Cai-Fu Li, Jingdong Guo, Zhi-Quan Liu. Mechanism of improved electromigration reliability using Fe-Ni UBM in wafer level package [J]. J. Mater. Sci. Technol., 2018, 34(8): 1305-1314. |
[15] | Jinchuan Wu, Changshun Ruan, Yufei Ma, Yuanliang Wang, Yanfeng Luo. Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds [J]. J. Mater. Sci. Technol., 2018, 34(3): 503-507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||