J. Mater. Sci. Technol. ›› 2021, Vol. 74: 78-88.DOI: 10.1016/j.jmst.2020.10.013
• Research Article • Previous Articles Next Articles
Di Wua,b,c, Libin Liua,b, Lijun Zenga,b, Wenguang Zhud, Wanlin Wangc, Xiaoyong Zhanga,*(), Junfeng Houe,*(
), Baoliang Liuf, Jiafeng Leig, Kechao Zhoua,b
Received:
2020-07-12
Revised:
2020-08-31
Accepted:
2020-09-07
Published:
2020-10-08
Online:
2020-10-08
Contact:
Xiaoyong Zhang,Junfeng Hou
About author:
hou8635@yeah.net (J. Hou).Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation[J]. J. Mater. Sci. Technol., 2021, 74: 78-88.
Sample | V | Mo | Al | Cr | Sn | Zr | Nb | C | O | N | H | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TM | - | - | 4.57 | 1.95 | 1.13 | 1.90 | 2.34 | 0.02 | 0.13 | 0.017 | 0.001 | Balance |
TM-12Mo | - | 12.63 | 4.66 | 1.90 | 1.12 | 1.95 | 2.38 | 0.01 | 0.16 | 0.015 | 0.001 | Balance |
TM-20V | 19.72 | - | 4.56 | 1.89 | 1.15 | 1.89 | 2.37 | 0.02 | 0.11 | 0.02 | 0.002 | Balance |
Table 1 Chemical composition of TM, TM-12Mo, and TM-20V alloys (wt.%).
Sample | V | Mo | Al | Cr | Sn | Zr | Nb | C | O | N | H | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TM | - | - | 4.57 | 1.95 | 1.13 | 1.90 | 2.34 | 0.02 | 0.13 | 0.017 | 0.001 | Balance |
TM-12Mo | - | 12.63 | 4.66 | 1.90 | 1.12 | 1.95 | 2.38 | 0.01 | 0.16 | 0.015 | 0.001 | Balance |
TM-20V | 19.72 | - | 4.56 | 1.89 | 1.15 | 1.89 | 2.37 | 0.02 | 0.11 | 0.02 | 0.002 | Balance |
Fig. 1. Schematic of TM-TM20V-TM12Mo diffusion multiple. The red box is the research area, and the black dot matrix in the box is nanoindentation, with a total of 15 × 15 dots and an interval of 100 μm.
Fig. 5. Hardness distribution of the TA-xMo-yV alloy at different positions in the red box area in Fig. 1. (a) Quenched at 1100 °C, the positions of a, b, and c correspond to Fig. 3(a-c) respectively; (b) aging at 600 °C, corresponding to Fig. 4.
Fig. 6. (a, b) TEM images of forged TM-6Mo-3V alloy quenched at 1100 °C and selected electron diffraction in the [113] β direction, (c, d) 600 °C aging TEM morphology and selected electron diffraction in [1$\bar{1}$1] the β direction.
Fig. 8. TEM images of the aged TM-6Mo-3V alloy after tensile deformation: (a) bright field image, (b) curved α phase, (c) selective electron diffraction in the [011] β direction, (d) the accumulation of dislocations in the β phase at the α/β interface induces α phase twinning, (e) Selected area electron diffraction in the [$1\bar{2}1\bar{3}$]α direction.
Fig. 9. Statistical comparison of the number density of α phases in Fig. 4(c, h, l, k) and 4(d, i, m, q, p). The latter is significantly higher than the former.
Fig. 10. Schematic of the pseudo-spinodal mechanism principle. The fluctuation of alloy composition causes the change in free energy, thereby providing the driving force for the precipitation of the α phase. Calloy is the alloy composition, Cαinit is the initial composition of the α phase nucleation, Cαequil is the equilibrium composition of the α-phase, the red arrow represents the composition fluctuation, and the green arrow represents the driving force for the β to α transition caused by the composition fluctuation.
Fig. 11. (a) Free energy curves of the α- and β-phases of TM-xMo-yV (x = 1, 3.2, 5.9, 7.5) alloy calculated by TC at 600 °C; (b) Enlarged view of Fig. 11(a), where the free energy curve intersection point C0 is TM-1Mo-7.6V, TM-3.2Mo-5.3V, TM-5.9Mo-2.8V, and TM-7.5Mo-1.8V, corresponding to Fig. 4(i, m, p, q), respectively.
Fig. 12. Composition of α and β phases in TM-3Mo-xV (a, b) and TM-3V-xMo (c, d) alloys calculated with CALPHAD as a function of Mo and V contents (corresponding to the second column and second row of Fig. 4).
Composition | $\text{M}{{\text{o}}_{i\beta }}$ (wt.%) | ${{\text{V}}_{i\beta }}$ (wt.%) | α-phase fraction, ${{f}_{\alpha }}$ (%) | β-phase fraction, ${{f}_{\beta }}$ (%) | Thickness of α phase, h (nm) | Hardness (GPa) | Yield strength (MPa) |
---|---|---|---|---|---|---|---|
0.9Mo-1.4V | 4.85 | 6.04 | 82.07 | 17.92 | 640 | 4.55 | 1123.5 |
3.2Mo-1.4V | 11.77 | 4.51 | 74.15 | 25.84 | 237.5 | 4.83 | 1193 |
6.1Mo-1.3V | 17.07 | 2.98 | 67.31 | 32.68 | 79.6 | 5.42 | 1337.1 |
7.7Mo-1.2V | 19.27 | 2.69 | 62.78 | 37.21 | 44.5 | 5.56 | 1372.5 |
8.8Mo-1.0V | 20.99 | 1.93 | 61.14 | 38.85 | 45.9 | 5.52 | 1362.9 |
1Mo-3.5V | 3.68 | 11.84 | 75.39 | 24.6 | 301.4 | 4.83 | 1192.5 |
3.3Mo-2.8V | 10.32 | 7.43 | 70.15 | 29.84 | 109.8 | 5.24 | 1292.7 |
5.9Mo-2.0V | 15.66 | 4.92 | 64.14 | 35.85 | 54.8 | 5.63 | 1391.2 |
7.4Mo-2.1V | 17.81 | 4.46 | 59.53 | 40.46 | 53.4 | 5.54 | 1368.6 |
8.1Mo-1.7V | 19.44 | 3.68 | 57.83 | 42.16 | 48.9 | 5.58 | 1377.8 |
0.9Mo-5.2V | 3.14 | 14.76 | 70.62 | 29.37 | 136.6 | 5.23 | 1290.4 |
3.4Mo-4.2V | 8.96 | 10.39 | 65.20 | 34.79 | 76.1 | 5.50 | 1357.6 |
5.8Mo-3.1V | 14.48 | 6.65 | 61.01 | 38.98 | 36.4 | 5.72 | 1411.7 |
7.5Mo-2.8V | 16.97 | 5.54 | 57.40 | 42.59 | 45.5 | 5.54 | 1368.6 |
8.5Mo-2.5V | 18.54 | 4.75 | 55.66 | 44.33 | 67.3 | 5.50 | 1357.6 |
0.9Mo-8.0V | 2.44 | 18.84 | 61.19 | 38.80 | 52 | 5.33 | 1316.9 |
3.3Mo-6.8V | 7.14 | 14.78 | 55.53 | 44.46 | 54.9 | 5.50 | 1357.5 |
5.9Mo-5.9V | 11.67 | 11.22 | 50.92 | 49.07 | 65.1 | 5.10 | 1260.3 |
7.6Mo-5.5V | 14.09 | 9.60 | 48.11 | 51.88 | 79.1 | 4.92 | 1214.7 |
8.6Mo-4.5V | 16.03 | 7.98 | 48.29 | 51.70 | 62.6 | 5.10 | 1258.9 |
1.1Mo-9.7V | 2.20 | 20.34 | 56.55 | 43.44 | 61 | 5.07 | 1251.9 |
3.5Mo-8.5V | 6.62 | 16.14 | 51.76 | 48.23 | 71.8 | 5.04 | 1243.5 |
5.7Mo-6.7V | 11.25 | 11.97 | 48.97 | 51.02 | 69.4 | 4.90 | 1209.6 |
7.3Mo-6.0V | 13.60 | 10.36 | 46.13 | 53.86 | 69.9 | 4.99 | 1231.6 |
8.1Mo-5.4V | 15.19 | 9.17 | 45.25 | 54.74 | 68.2 | 4.88 | 1205.5 |
Table 2 Composition of the alloy corresponding to the composition of Fig. 4. The composition of Mo and V in the β phase ($\text{M}{{\text{o}}_{i\beta }}$ and ${{\text{V}}_{i\beta }}$), the fractions of the α and β phases (${{f}_{\alpha }}$ and ${{f}_{\beta }}$), the thickness of the α phase (h), the hardness and yield strength, and the yield strength is obtained through proportional conversion of hardness.
Composition | $\text{M}{{\text{o}}_{i\beta }}$ (wt.%) | ${{\text{V}}_{i\beta }}$ (wt.%) | α-phase fraction, ${{f}_{\alpha }}$ (%) | β-phase fraction, ${{f}_{\beta }}$ (%) | Thickness of α phase, h (nm) | Hardness (GPa) | Yield strength (MPa) |
---|---|---|---|---|---|---|---|
0.9Mo-1.4V | 4.85 | 6.04 | 82.07 | 17.92 | 640 | 4.55 | 1123.5 |
3.2Mo-1.4V | 11.77 | 4.51 | 74.15 | 25.84 | 237.5 | 4.83 | 1193 |
6.1Mo-1.3V | 17.07 | 2.98 | 67.31 | 32.68 | 79.6 | 5.42 | 1337.1 |
7.7Mo-1.2V | 19.27 | 2.69 | 62.78 | 37.21 | 44.5 | 5.56 | 1372.5 |
8.8Mo-1.0V | 20.99 | 1.93 | 61.14 | 38.85 | 45.9 | 5.52 | 1362.9 |
1Mo-3.5V | 3.68 | 11.84 | 75.39 | 24.6 | 301.4 | 4.83 | 1192.5 |
3.3Mo-2.8V | 10.32 | 7.43 | 70.15 | 29.84 | 109.8 | 5.24 | 1292.7 |
5.9Mo-2.0V | 15.66 | 4.92 | 64.14 | 35.85 | 54.8 | 5.63 | 1391.2 |
7.4Mo-2.1V | 17.81 | 4.46 | 59.53 | 40.46 | 53.4 | 5.54 | 1368.6 |
8.1Mo-1.7V | 19.44 | 3.68 | 57.83 | 42.16 | 48.9 | 5.58 | 1377.8 |
0.9Mo-5.2V | 3.14 | 14.76 | 70.62 | 29.37 | 136.6 | 5.23 | 1290.4 |
3.4Mo-4.2V | 8.96 | 10.39 | 65.20 | 34.79 | 76.1 | 5.50 | 1357.6 |
5.8Mo-3.1V | 14.48 | 6.65 | 61.01 | 38.98 | 36.4 | 5.72 | 1411.7 |
7.5Mo-2.8V | 16.97 | 5.54 | 57.40 | 42.59 | 45.5 | 5.54 | 1368.6 |
8.5Mo-2.5V | 18.54 | 4.75 | 55.66 | 44.33 | 67.3 | 5.50 | 1357.6 |
0.9Mo-8.0V | 2.44 | 18.84 | 61.19 | 38.80 | 52 | 5.33 | 1316.9 |
3.3Mo-6.8V | 7.14 | 14.78 | 55.53 | 44.46 | 54.9 | 5.50 | 1357.5 |
5.9Mo-5.9V | 11.67 | 11.22 | 50.92 | 49.07 | 65.1 | 5.10 | 1260.3 |
7.6Mo-5.5V | 14.09 | 9.60 | 48.11 | 51.88 | 79.1 | 4.92 | 1214.7 |
8.6Mo-4.5V | 16.03 | 7.98 | 48.29 | 51.70 | 62.6 | 5.10 | 1258.9 |
1.1Mo-9.7V | 2.20 | 20.34 | 56.55 | 43.44 | 61 | 5.07 | 1251.9 |
3.5Mo-8.5V | 6.62 | 16.14 | 51.76 | 48.23 | 71.8 | 5.04 | 1243.5 |
5.7Mo-6.7V | 11.25 | 11.97 | 48.97 | 51.02 | 69.4 | 4.90 | 1209.6 |
7.3Mo-6.0V | 13.60 | 10.36 | 46.13 | 53.86 | 69.9 | 4.99 | 1231.6 |
8.1Mo-5.4V | 15.19 | 9.17 | 45.25 | 54.74 | 68.2 | 4.88 | 1205.5 |
Fig. 13. (a) Variation of the alloy yield strength calculated by Eq. (7) with the α-phase fraction and thickness and the experimental results (the experimental results are obtained from the hardness). In Eq. (7), $\text{M}{{\text{o}}_{i\beta }}$ and ${{\text{V}}_{i\beta }}$ are set to constant 10. (b) The cross-sections where the α phase thickness is 50 and 500 nm.
[1] |
R.R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114.
DOI URL |
[2] |
A. Ghosh, S. Sivaprasad, A. Bhattacharjee, S.K. Kar, Mater. Sci. Eng. A 568 (2013) 61-67.
DOI URL |
[3] |
S.L. Nyakana, J.C. Fanning, R.R. Boyer, J. Mater. Eng. Perform. 14 (2005) 799-811.
DOI URL |
[4] | F.H. Froes, H.B. Bomberger, JOM 37 (1985) 28-37. |
[5] |
B. Hu, J. Yu, J. Wang, B. Yao, F. Min, Y. Du, Calphad 62 (2018) 75-82.
DOI URL |
[6] |
Q. Luo, C. Zhai, Q. Gu, W. Zhu, Q. Li, J. Alloys. Compd. 814 (2020), 152297.
DOI URL |
[7] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120. |
[8] |
J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Mater. Des. 49 (2013) 945-952.
DOI URL |
[9] |
W. Chen, Y. Lv, X. Zhang, C. Chen, Y.C. Lin, K. Zhou, Mater. Sci. Eng. A 758 (2019) 71-78.
DOI URL |
[10] |
N.G. Jones, R.J. Dashwood, M. Jackson, D. Dye, Scr. Mater. 60 (2009) 571-573.
DOI URL |
[11] |
C. Huang, Y. Zhao, S. Xin, W. Zhou, Q. Li, W. Zeng, J. Alloys. Compd. 693 (2017) 582-591.
DOI URL |
[12] |
G.T. Terlinde, T.W. Duerig, J.C. Williams, Metall. Trans. A 14 (1983) 2101-2115.
DOI URL |
[13] |
Q. Luo, K. Li, Q. Li, J. Mater. Sci. Technol. 34 (2018) 1592-1601.
DOI URL |
[14] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy 7 (2019) 58-71.
DOI URL |
[15] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[16] |
S.L. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, D. Dye, Mater. Sci. Eng. A 488 (2008) 8-15.
DOI URL |
[17] |
G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S.N. Rao, Mater. Des. 47 (2013) 323-330.
DOI URL |
[18] |
N.G. Jones, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater. 57 (2009) 3830-3839.
DOI URL |
[19] |
P. Li, Q.Y. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 769 (2020), 138487.
DOI URL |
[20] |
D. Qin, Y. Lu, Q. Liu, L. Zheng, L. Zhou, Mater. Sci. Eng. A 572 (2013) 19-24.
DOI URL |
[21] |
J.K. Fan, J.S. Li, H.C. Kou, K. Hua, B. Tang, Mater. Charact. 96 (2014) 93-99.
DOI URL |
[22] |
L. Mora, C. Quesne, R. Penelle, C. Servant, J. Mater. Res. 11 (1996) 81-88.
DOI URL |
[23] |
L. Ren, W. Xiao, H. Chang, Y. Zhao, C. Ma, L. Zhou, Mater. Sci. Eng. A 711 (2018) 553-561.
DOI URL |
[24] | H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, 2010. |
[25] | D.A. Porter, K.E. Easterling, Easterling, London (1981). |
[26] |
S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, H.L. Fraser, Acta Mater. 60 (2012) 6247-6256.
DOI URL |
[27] |
A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, Y. Wang, Acta Mater. 64 (2014) 188-197.
DOI URL |
[28] |
Y. Ni, A.G. Khachaturyan, Nat. Mater. 8 (2009) 410-414.
DOI URL |
[29] | J.C. Zhao, X. Zheng, D.G. Cahill, Mater. Today 8 (2005) 28-37. |
[30] | J.C. Zhao, X. Zheng, D.G. Cahill, JOM 63 (2011) 40-44. |
[31] |
C.Y. Wang, L.W. Yang, Y.W. Cui, M.T. Pérez-Prado, Mater. Des. 137 (2018) 371-383.
DOI URL |
[32] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[33] |
Q. Luo, H. Chen, W. Chen, C. Wang, W. Xu, Q. Li, Scr. Mater. 187 (2020) 413-417.
DOI URL |
[34] |
D. An, S. Pan, Q. Ren, Q. Li, B.W. Krakauer, M. Zhu, Scr. Mater. 178 (2020) 207-210.
DOI URL |
[35] | X.D. Zhang, L.B. Liu, J.C. Zhao, J.L. Wang, F. Zheng, Z.P. Jin, Mater. Sci. Eng. C 39 (2014) 273-280. |
[36] |
F.G. Coury, P. Wilson, K.D. Clarke, M.J. Kaufman, A.J. Clarke, Acta Mater. 167 (2019) 1-11.
DOI URL |
[37] |
L.J. Zeng, G.L. Xu, L.B. Liu, W.M. Bai, L.G. Zhang, Calphad-Computer Coupling of Phase Diagrams Thermochem. 61 (2018) 20-32.
DOI URL |
[38] |
L. Zeng, L. Liu, S. Huang, L. Zhang, Calphad 58 (2017) 58-69.
DOI URL |
[39] |
H. Lei, Y. Cui, C. Hui, Z. Hong, J. Li, Z. Lian, J. Phase Equilib. Diff. 31 (2010) 135-143.
DOI URL |
[40] |
Y. Chen, L. Cheng, Y. Zhang, IOP Conf. Ser.: Mater. Sci. Eng. 242 (2017), 012019.
DOI URL |
[41] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[42] |
H. Shi, Q. Li, J. Zhang, Q. Luo, K.C. Chou, Calphad 68 (2020), 101742.
DOI URL |
[43] |
S. Chen, W. Cao, C. Zhang, J. Zhu, F. Zhang, Q. Li, J. Zhang, Calphad 55 (2016) 63-68.
DOI URL |
[44] |
S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Scr. Mater. 60 (2009) 611-614.
DOI URL |
[45] |
Y. Guo, H. Abdolvand, T.B. Britton, A.J. Wilkinson, Acta Mater. 126 (2017) 221-235.
DOI URL |
[46] |
F. Coghe, W. Tirry, L. Rabet, D. Schryvers, P. Van Houtte, Mater. Sci. Eng. A 537 (2012) 1-10.
DOI URL |
[47] |
Y. Ni, W. Rao, A.G. Khachaturyan, Nano Lett. 9 (2009) 3275-3281.
DOI URL |
[48] |
Y. Zheng, R. Williams, J. Sosa, T. Alam, Y. Wang, R. Banerjee, H. Fraser, Acta Mater. 103 (2016) 165-173.
DOI URL |
[49] | Y. Zheng, Nucleation Mechanisms of Refined Alpha Microstructure in Beta Titanium Alloys, The Ohio State University, 2013. |
[50] |
W. Zhu, Q. Sun, C. Tan, P. Li, L. Xiao, J. Sun, J. Alloys. Compd. 827 (2020), 154311.
DOI URL |
[51] |
C.A.F. Salvador, V.C. Opini, M.G. Mello, R. Caram, Mater. Sci. Eng. A 743 (2019) 716-725.
DOI URL |
[52] |
G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Diaz-del-Castillo, Mater. Sci. Eng. A 756 (2019) 156-160.
DOI URL |
[53] |
L.X. Yin, S.X. Liang, R.J. Jiang, J. Alloys. Compd. 603 (2014) 42-47.
DOI URL |
[54] |
B.B. Sun, M.L. Sui, Y.M. Wang, G. He, J. Eckert, E. Ma, Acta Mater. 54 (2006) 1349-1357.
DOI URL |
[55] |
H.W. Rosenberg, W.D. Nix, Metall. Trans. 4 (1973) 1333-1338.
DOI URL |
[56] |
L. Gao, R.S. Chen, E.H. Han, J. Alloys. Compd. 481 (2009) 379-384.
DOI URL |
[57] | G.E. Pellissier, S.M. Purdy, Stereology and Quantitative Metallography, ASTM International, Easton, 1972. |
[58] | M.T. Ma, B.R. Wu, Dual-Phase Steel-Physical and Mechanical Properties, Metallurgy Industry Press, Beijing, 1988. |
[59] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, W.Q. Wang, Mater. Sci. Eng. A 578 (2013) 103-109.
DOI URL |
[60] | J. Cahoon, W. Broughton, A. Kutzak, Metall. Mater. Trans. B 2 (1971) 1979-1983. |
[61] |
R.K. Gupta, D. Fabijanic, R. Zhang, N. Birbilis, Corros. Sci. 98 (2015) 643-650.
DOI URL |
[62] |
P. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 529 (2011) 62-73.
DOI URL |
[63] |
D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, L. Zhou, Mater. Sci. Eng. A 587 (2013) 100-109.
DOI URL |
[64] |
L. Ren, W. Xiao, C. Ma, R. Zheng, L. Zhou, Scr. Mater. 156 (2018) 47-50.
DOI URL |
[65] |
M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Mater. 104 (2016) 190-200.
DOI URL |
[66] |
A. Bhattacharjee, S. Bhargava, V.K. Varma, S.V. Kamat, A.K. Gogia, Scr. Mater. 53 (2005) 195-200.
DOI URL |
[67] |
W. Tirry, S. Bouvier, N. Benmhenni, W. Hammami, A.M. Habraken, F. Coghe, D. Schryvers, L. Rabet, Mater. Charact. 72 (2012) 24-36.
DOI URL |
[68] |
S. Wang, C. Schuman, L. Bao, J.S. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, X. Zhao, C. Esling, Acta Mater. 60 (2012) 3912-3919.
DOI URL |
[69] |
Q. Yu, Z.W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma, Nature 463 (2010) 335-338.
DOI URL |
[70] |
A. Ghaderi, M.R. Barnett, Acta Mater. 59 (2011) 7824-7839.
DOI URL |
[71] |
S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, M.J. Mills, Acta Mater. 47 (1999) 1019-1034.
DOI URL |
[72] | M.F. Savage, J. Tatalovich, M.J. Mills, Philos. Mag. Abingdon (Abingdon) 84 (2004) 1127-1154. |
[73] |
P. Zhao, C. Shen, M.F. Savage, J. Li, S.R. Niezgoda, M.J. Mills, Y. Wang, Acta Mater. 171 (2019) 291-305.
DOI URL |
[1] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[2] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[3] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[4] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[5] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[6] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[7] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[8] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[9] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[10] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[11] | Jia Li, Haotian Chen, Hui Feng, Qihong Fang, Yong Liu, Feng Liu, Hong Wu, Peter K Liaw. Microstructure evolution and deformation mechanism of amorphous/crystalline high-entropy-alloy composites [J]. J. Mater. Sci. Technol., 2020, 54(0): 14-19. |
[12] | Xueze Jin, Wenchen Xu, Zhongze Yang, Can Yuan, Debin Shan, Bugang Teng, Bo Cheng Jin. Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 133-145. |
[13] | Shiyi Wen, Yuling Liu, George Kaptay, Yong Du. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 72-82. |
[14] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[15] | Rongjian Shi, Zidong Wang, Lijie Qiao, Xiaolu Pang. Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1940-1950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||