J. Mater. Sci. Technol. ›› 2021, Vol. 74: 69-77.DOI: 10.1016/j.jmst.2020.09.032
• Research Article • Previous Articles Next Articles
Wenjuan Wanga,1, Yan Zhaoa,1, Yongguang Zhanga,*(), Ning Liua, Zhumabay Bakenovb,*(
)
Received:
2020-06-13
Revised:
2020-07-25
Accepted:
2020-08-10
Published:
2021-05-30
Online:
2020-10-06
Contact:
Yongguang Zhang,Zhumabay Bakenov
About author:
zbakenov@nu.edu.kz (Z. Bakenov).1These authors equally contributed to this work.
Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries[J]. J. Mater. Sci. Technol., 2021, 74: 69-77.
Fig. 1. (a, b) SEM and (c, d) TEM images of PC from corn. (e, f) SEM, (g, i) TEM images of Ni/PC; (h) EDS elemental mapping for Ni, C, and O. (j) HRTEM image of Ni/PC (FFT pattern in the selected area marked by the blue square), (k) inverse FFT crystalline lattice image, (l) lattice spacing profiles along the selected area marked by the pink square.
Fig. 2. (a) XRD patterns of Ni/PC and PC; XPS spectra of S@Ni/PC and S@PC: (b) Ni 2p3/2, (c) C 1s, and (d) S 2p; (e) N2 adsorption-desorption isotherms (inset: pore size distribution curve) of Ni/PC and PC; (f) TG curves of S@Ni/PC and S@PC.
Fig. 3. (a) Initial three cyclic voltammetry (CV) cycles of S@Ni/PC cathode; (b) the second CV cycle curves of the S@Ni/PC and S@PC cathodes; c) typical charge and discharge profiles of the S@Ni/PC cathode at the 1 st, 2nd, 3rd, 50th, 100th, and 150th cycles at 0.2 C; d) cycling performance of the S@Ni/PC and S@PC cathodes at 0.2 C over 150 cycles; (e) rate capability of the S@Ni/PC and S@PC cathodes; (f) Nyquist plots of the S@Ni/PC and S@PC cathodes before cycling at a frequency range from 100 kHz to 0.1 Hz at room temperature (the inset is the best fitting equivalent circuit model); (g) prolonged cycling performance of the S@Ni/PC and S@PC cathodes at 1 C (1 C = 1675 mA g-1); (h) the optical image of a “HEBUT” light-emitting diodes (LEDs) powered by two cells based on S@Ni/PC cathode.
Fig. 4. (a) DFT optimized binding geometries of polysulfide molecules (Li2Sx, x = 2, 4, 6, 8) and S8 on Ni (111) surface. Here, the blue, yellow, and purple spheres represent Ni, S, and Li atoms, respectively. (b) binding energies of various polysulfides anchored on Ni (111) surface obtained from DFT calculations.
Fig. 5. (a) UV-vis spectra and images of LiPSs solutions samples adsorbed by Ni/PC and PC; b) S 2p and c) Ni 2p high-resolution XPS spectra of Li2S6 adsorbed by Ni/PC. (d) multi-cycle voltammograms of the Ni/PC symmetric cell at 6 mV s-1; (e) cyclic voltammograms of symmetric cells for Ni/PC at different scan rates. (f) Electrochemical impedance spectra of symmetric cells with Ni/PC and PC electrodes (the inset is the best fitting equivalent circuit model).
Fig. 6. Potentiostatic discharge curves of (a) Ni/PC and (b) PC cathodes based lithium polysulfide batteries with Li2S8/tetraglyme solution at 2.05 V. The current-axis scale is indicated by a bar in the right part of the Fig. The light color indicates the precipitation of Li2S whereas the dark color represents the reduction of Li2S8/Li2S6. The capacity of Li2S deposition is indicated correspondingly. CV curves of the electrodes at various scan rates and corresponding linear fits of the peak currents of Li-S cells with (c), (d) S@Ni/PC cathode and (e), (f) S@PC cathode.
[1] |
A. Bhargav, J. He, A. Gupta, A. Manthiram, Joule 4 (2020) 285-291.
DOI URL |
[2] |
S. Urbonaite, T. Poux, P. Novák, Adv. Energy Mater. 5 (2015), 1500118.
DOI URL |
[3] |
J. He, Y. Chen, A. Manthiram, Energy Environ. Sci. 11 (2018) 2560-2568.
DOI URL |
[4] |
M.A. Pope, I.A. Aksay, Adv. Energy Mater. 5 (2015), 1500124.
DOI URL |
[5] |
Q. Guo, Z. Zheng, Adv. Funct. Mater. 30 (2019), 1907931.
DOI URL |
[6] |
M.R. Kaiser, S. Chou, H.K. Liu, S.X. Dou, C. Wang, J. Wang, Adv. Mater. 29 (2017), 1700449.
DOI URL |
[7] |
D. Zheng, G. Wang, D. Liu, J. Si, T. Ding, D. Qu, X. Yang, D. Qu, Adv. Mater. Technol. 3 (2018), 1700233.
DOI URL |
[8] |
J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 12 (2019) 344-350.
DOI URL |
[9] |
J. He, A. Bhargav, H. Yaghoobnejad Asl, Y. Chen, A. Manthiram, Adv. Energy Mater. 10 (2020), 2001017.
DOI URL |
[10] |
J. He, Y. Chen, W. Lv, K. Wen, C. Xu, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 10 (2016) 10981-10987.
DOI URL |
[11] |
J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 29 (2017), 1702707.
DOI URL |
[12] |
H. Yuan, T. Liu, Y. Liu, J. Nai, Y. Wang, W. Zhang, X. Tao, Chem. Sci. 10 (2019) 7484-7495.
DOI URL |
[13] |
Y. Zhang, X. Zong, L. Zhan, X. Yu, J. Gao, C. Xun, P. Li, Y. Wang, Electrochim. Acta 284 (2018) 89-97.
DOI URL |
[14] |
Z. Peng, Y. Zou, S. Xu, W. Zhong, W. Yang, ACS Appl. Mater. Interfaces 10 (2018) 22190-22200.
DOI URL |
[15] |
S. Yu, X. Zhu, G. Lou, Y. Wu, K. Xu, Y. Zhang, L. Zhang, E. Zhu, H. Chen, Z. Shen, B. Bao, S. Fu, Mater. Des. 149 (2018) 184-193.
DOI URL |
[16] |
X. Wei, Y. Li, S. Gao, J. Mater. Chem. A 5 (2017) 181-188.
DOI URL |
[17] |
F. Luna-Lama, D. Rodríguez-Padrón, A.R. Puente-Santiago, M.J. Muñoz-Batista, A. Caballero, A.M. Balu, A.A. Romero, R. Luque, J. Cleaner Prod. 207 (2019) 411-417.
DOI URL |
[18] |
X. Li, B.Y. Guan, S. Gao, X.W. Lou, Energy Environ. Sci. 12 (2019) 648-655.
DOI URL |
[19] |
J.L. Goldfarb, G. Dou, M. Salari, M.W. Grinstaff, ACS Sustainable Chem. Eng. 5 (2017) 3046-3054.
DOI URL |
[20] |
L. Jiang, Y.-H. Seong, S.O. Han, H. Kim, H.H. Kim, J.S. Foord, Carbon 130 (2018) 724-729.
DOI URL |
[21] |
G. Lin, R. Ma, Y. Zhou, Q. Liu, X. Dong, J. Wang, Electrochim. Acta 261 (2018) 49-57.
DOI URL |
[22] |
F. Li, F. Qin, K. Zhang, J. Fang, Y. Lai, J. Li, J. Power Sources 362 (2017) 160-167.
DOI URL |
[23] |
J. Ren, Y. Zhou, H. Wu, F. Xie, C. Xu, D. Lin, J. Energy Chem. 30 (2019) 121-131.
DOI URL |
[24] |
G. Yuan, F. Yin, Y. Zhao, Z. Bakenov, G. Wang, Y. Zhang, Ionics 22 (2015) 63-69.
DOI URL |
[25] |
C. Liang, J. Bao, C. Li, H. Huang, C. Chen, Y. Lou, H. Lu, H. Lin, Z. Shi, S. Feng, Microporous Mesoporous Mater. 251 (2017) 77-82.
DOI URL |
[26] |
Q. Li, C. Lu, D. Xiao, H. Zhang, C. Chen, L. Xie, Y. Liu, S. Yuan, Q. Kong, K. Zheng, J. Yin, ChemElectroChem 5 (2018) 1279-1287.
DOI URL |
[27] |
Y. Li, N. Yu, P. Yan, Y. Li, X. Zhou, S. Chen, G. Wang, T. Wei, Z. Fan, J. Power Sources 300 (2015) 309-317.
DOI URL |
[28] |
S.H. Chung, A. Manthiram, Adv. Mater. 26 (2014) 1360-1365.
DOI URL |
[29] |
Y. Zhang, Y. Zhao, A. Konarov, Z. Li, P. Chen, J. Alloys Compd. 619 (2015) 298-302.
DOI URL |
[30] |
J. He, Y. Chen, A. Manthiram, Adv. Energy Mater. 9 (2019), 1900584.
DOI URL |
[31] |
R. Zhang, C. Chi, M. Wu, K. Liu, T. Zhao, J. Power Sources 451 (2020), 227751.
DOI URL |
[32] |
Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang, Y. Xia, X. Wang, Q. Zhang, J. Tu, Adv. Energy Mater. 8 (2018), 1701110.
DOI URL |
[33] |
J. Xu, W. Zhang, Y. Chen, H. Fan, D. Su, G. Wang, J. Mater. Chem. A 6 (2018) 2797-2807.
DOI URL |
[34] |
J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang, F. Pan, Nano Energy 37 (2017) 7-14.
DOI URL |
[35] |
S. Liu, J. Li, X. Yan, Q. Su, Y. Lu, J. Qiu, Z. Wang, X. Lin, J. Huang, R. Liu, B. Zheng, L. Chen, R. Fu, D. Wu, Adv. Mater. 30 (2018), 1706895.
DOI URL |
[36] |
H. Liu, S. Zhang, Q. Zhu, B. Cao, P. Zhang, N. Sun, B. Xu, F. Wu, R. Chen, J. Mater. Chem. A 7 (2019) 11205-11213.
DOI URL |
[37] |
T. Xu, J. Song, M.L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, ACS Appl. Mater. Interfaces 5 (2013) 11355-11362.
DOI URL |
[38] |
Y. Zhang, W. Qiu, Y. Zhao, Y. Wang, Z. Bakenov, X. Wang, Chem. Eng. J. 375 (2019), 122055.
DOI URL |
[39] |
H. Li, J. Wang, Y. Zhang, Y. Wang, A. Mentbayeva, Z. Bakenov, J. Power Sources 437 (2019), 226901.
DOI URL |
[40] |
H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Electrochim. Acta 180 (2015) 241-251.
DOI URL |
[41] |
D. Guo, L. Zhang, X. Song, L. Tan, H. Ma, J. Jiao, D. Zhu, F. Li, New J. Chem. 42 (2018) 8478-8484.
DOI URL |
[42] |
Y. Zhao, L. Wang, L. Huang, M.Y. Maximov, M. Jin, Y. Zhang, X. Wang, G. Zhou, Nanomaterials 7 (2017) 402.
DOI URL |
[43] |
H. Zhang, Q. Gao, W. Qian, H. Xiao, Z. Li, L. Ma, X. Tian, ACS Appl. Mater. Interfaces 10 (2018) 18726-18733.
DOI URL |
[44] |
S. Luo, W. Sun, J. Ke, Y. Wang, S. Liu, X. Hong, Y. Li, Y. Chen, W. Xie, C. Zheng, Nanoscale 10 (2018) 22601-22611.
DOI URL |
[45] |
F. Wu, S. Zhao, L. Chen, Y. Lu, Y. Su, J. Li, L. Bao, J. Yao, Y. Zhou, R. Chen, Electrochim. Acta 292 (2018) 199-207.
DOI URL |
[46] |
Z. Zhang, S. Basu, P. Zhu, H. Zhang, A. Shao, N. Koratkar, Z. Yang, Carbon 142 (2019) 32-39.
DOI |
[47] |
Y. Xia, Y.F. Liang, D. Xie, X.L. Wang, S.Z. Zhang, X.H. Xia, C.D. Gu, J.P. Tu, Chem. Eng. J. 358 (2019) 1047-1053.
DOI |
[48] |
X. Lu, Q. Zhang, J. Wang, S. Chen, J. Ge, Z. Liu, L. Wang, H. Ding, D. Gong, H. Yang, X. Yu, J. Zhu, B. Lu, Chem. Eng. J. 358 (2019) 955-961.
DOI URL |
[49] |
Q. Qu, T. Gao, H. Zheng, Y. Wang, X. Li, X. Li, J. Chen, Y. Han, J. Shao, H. Zheng, Adv. Mater. Interfaces 2 (2015), 1500048.
DOI URL |
[50] |
J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang, Y. Zhao, J. Li, Z. Chen, Nano Energy 64 (2019), 103905.
DOI URL |
[51] |
Y. He, M. Li, Y. Zhang, Z. Shan, Y. Zhao, J. Li, G. Liu, C. Liang, Z. Bakenov, Q. Li, Adv. Funct. Mater. 30 (2020), 2000613.
DOI URL |
[52] |
W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui, M. Li, Z. Bakenov, X. Wang, ACS Appl. Mater. Interfaces 12 (2020) 12763-12773.
DOI URL |
[53] |
Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Adv. Mater. 32 (2020), 1904876.
DOI URL |
[54] |
J. Wu, Q. Ma, C. Lian, Y. Yuan, D. Long, Chem. Eng. J. 370 (2019) 556-564.
DOI URL |
[55] |
L. Qiu, Y. Xiang, M. Xin, K. Zou, A. Zheng, G. Xu, J. Mol. Struct. 1202 (2020), 127215.
DOI URL |
[56] |
J. Jiang, J. Zhu, W. Ai, X. Wang, Y. Wang, C. Zou, W. Huang, T. Yu, Nat. Commun. 6 (2015) 8622.
DOI PMID |
[57] |
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L.J. Wan, J. Am. Chem. Soc. 141 (2019) 3977-3985.
DOI URL |
[58] | D. Fang, Y. Wang, X. Liu, J. Yu, C. Qian, S. Chen, X. Wang, S. Zhang, ACS Nano 13 (2019) 1563-1573. |
[59] |
H. Yuan, H.J. Peng, B.Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.Q. Huang, Q. Zhang, Adv. Energy Mater. 9 (2019), 1802768.
DOI URL |
[60] |
H. Zhang, M. Zou, W. Zhao, Y. Wang, Y. Chen, Y. Wu, L. Dai, A. Cao, ACS Nano 13 (2019) 3982-3991.
DOI PMID |
[61] |
Y. Yang, Z. Wang, T. Jiang, C. Dong, Z. Mao, C. Lu, W. Sun, K. Sun, J. Mater. Chem. A 6 (2018) 13593-13598.
DOI URL |
[1] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[2] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
[3] | Francisco Gontad, Antonella Lorusso, Giancarlo Gatti, Massimo Ferrario,Laura Gioia Passione, Luana Persano, Nicola Lovergine, Alessio Perrone. Characterisation of Photocathodes Based on Pb Thin Film Deposited by UV Pulsed Laser Ablation [J]. J. Mater. Sci. Technol., 2014, 30(1): 37-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||