J. Mater. Sci. Technol. ›› 2021, Vol. 73: 101-107.DOI: 10.1016/j.jmst.2020.08.058
• Research Article • Previous Articles Next Articles
Yujie Chena,1, Yan Fanga,1, Xiaoqian Fua, Yiping Lub, Sijing Chena, Hongbin Beic,*(), Qian Yua,*(
)
Received:
2020-07-29
Revised:
2020-08-28
Accepted:
2020-08-30
Published:
2021-05-20
Online:
2020-09-29
Contact:
Hongbin Bei,Qian Yu
About author:
yu_qian@zju.edu.cn (Q. Yu).1These authors contribute equally to the work.
Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy[J]. J. Mater. Sci. Technol., 2021, 73: 101-107.
Fig. 1. Comparison of mechanical properties in four alloys. Engineering stress-strain curves for the CrCoNi-3W alloy (orange curve), CrCoNi alloy (red curve), Ni-3W (blue curve) and Ni (navy curve). All curves except Ni-3W are redrawn from data of ref. [29] [28], and [8]. GS: grain size.
Fig. 2. Comparison dislocation structures in three alloys. TEM images showing the dislocation structures for (a) CrCoNi-3W; (b) CrCoNi. The red lines in (b) represent the extended dislocation; (c) CrCoNi-3W. The extended dislocation is indicated by orange lines with the nanoscale segment detrapping marked by orange arrows. All TEM images were taken under beam axis [110].
Fig. 3. In-situ TEM observation of dislocation movement in CrCoNi-3W MEA and Ni-3W alloy. TEM images taken during in-situ straining experiments in (a) CrCoNi-3W alloy (snapshot from Supplementary Movie 1). The magnified TEM images on the top right corner are an exemplificative dislocation named “dislocation line 1”, marked by red arrows. (b) TEM images taken during in-situ TEM straining experiment in Ni-3W alloy (snapshot from Supplementary Movie 2). The yellow and green arrows are indicated the typical dislocation named “dislocation line 2” and “dislocation line 2’”, respectively.
Fig. 4. Comparison of microstructure under the similar amount of (~5 %) strain in three alloys counterparts. (a) CrCoNi-3W, (b) Ni-3W and (c) CrCoNi. All the TEM images were taken under beam axis [110].
Fig. 5. Comparison of the dislocation core structure. (a) CrCoNi-3W, (b) Ni-3W and (c) CrCoNi. All HAADF image taken with the <110> zone axis, showing the atomic structure of full dislocation, with the Burgers vector b of $\frac{1}{2}$ [110].
Fig. 6. Atomic scale elemental mapping and corresponding line profiles of atomic fraction of individual elements taken from respective EDS maps in three alloys. (a) Ni-3W; (b) CrCoNi-3W. The white circles are indicated a Ni-rich or Ni-poor region in Ni maps; and (c) CrCoNi. Each group of images above contains an atomic resolution HAADF image, corresponding EDS maps of all constituent elements and a representative line profile of atomic fraction taken from the EDS maps.
Fig. 7. Comparison of atomic scale strain distribution. (a) CrCoNi-3W; (b) CrCoNi; (c) Ni-3W. Every group of images includes HAADF image and corresponding maps of horizontal normal strain (εxx), vertical normal strain (εyy) and shear strain (εxy).
[1] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
[2] |
F.R.N. Nabarro, Philos. Mag. 35 (1977) 613-622.
DOI URL |
[3] |
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160 (2018) 158-172.
DOI URL |
[4] |
C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660-683.
DOI URL |
[5] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[6] |
F.G. Coury, P. Wilson, K.D. Clarke, M.J. Kaufman, A.J. Clarke, Acta Mater. 167 (2019) 1-11.
DOI URL |
[7] |
E. Ma, Scr. Mater. 181 (2020) 127-133.
DOI URL |
[8] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[9] |
J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[10] |
B. Cantor I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[11] |
B. Gludovatz, A. Hohenwarter K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602.
DOI PMID |
[12] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
[13] |
B. Gludovatz, E.P. George, R.O. Ritchie, JOM 67 (2015) 2262-2270.
DOI URL |
[14] |
M. Widom, W.P. Huhn, S. Maiti, W. Steurer, Metall. Mater. Trans. A 45 (2013) 196-200.
DOI URL |
[15] |
J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 8919-8924.
DOI URL |
[16] |
F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y.P. Ko, D.C. Pagan, J.C. Neuefeind, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 118 (2017), 205501.
DOI URL |
[17] |
A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, A. Caro, Acta Mater. 99 (2015) 307-312.
DOI URL |
[18] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[19] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 826.
DOI URL |
[20] |
L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Nat. Commun. 6 (2015) 5964.
DOI PMID |
[21] |
W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972-975.
DOI URL |
[22] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10 (2019) 3563.
DOI URL |
[23] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 (2016) 164-176.
DOI URL |
[24] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[25] |
R.E. Watson, L.H. Bennett, Phys. Rev. B 18 (1978) 6439-6449.
DOI URL |
[26] |
H.W. King, J. Mater. Sci. 1 (1966) 79-90.
DOI URL |
[27] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
[28] |
S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, Z.K. Liu, J. Phys. Condens. Matter 24 (2012), 505403.
DOI PMID |
[29] |
Z. Wu, W. Guo, K. Jin, J.D. Poplawsky, Y. Gao, H. Bei, J. Mater. Res. 33 (2018) 3301-3309.
DOI URL |
[30] |
Y. Tong, S. Zhao, K. Jin, H. Bei, J.Y.P. Ko, Y. Zhang, F.X. Zhang, Scr. Mater. 156 (2018) 14-18.
DOI URL |
[31] |
Y. Ma, Q. Wang, C. Dong, P.K. Liaw, C. Li, L.J. Santodonato, M. Feygenson, C. Dong, P.K. Liaw, Scr. Mater. 144 (2018) 64-68.
DOI URL |
[32] | T. Uesugi, K. Higashi, Comput. Mater. Sci. 67 (2013) 1-10. |
[33] |
L.T. Kong, J.B. Liu, W.S. Lal, B.X. Liu, J. Alloys. Compd. 337 (2002) 143-147.
DOI URL |
[34] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[35] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[36] |
Q. Yu, L. Qi, T. Tsuru, R. Traylor, D. Rugg, J.W. Morris Jr., M. Asta, D.C. Chrzan, A.M. Minor, Science 347 (2015) 635-639.
DOI URL |
[37] |
T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Acta Mater. 110 (2016) 352-363.
DOI URL |
[1] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[2] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[3] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[4] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[5] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 7-13. |
[6] | Bin Gan, Jeffrey M. Wheeler, Zhongnan Bi, Lin Liu, Jun Zhang, Hengzhi Fu. Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure [J]. J. Mater. Sci. Technol., 2019, 35(6): 957-961. |
[7] | Qing Dong, Zhe Luo, Hong Zhu, Leyun Wang, Tao Ying, Zhaohui Jin, Dejiang Li, Wenjiang Ding, Xiaoqin Zeng. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects [J]. J. Mater. Sci. Technol., 2018, 34(10): 1773-1780. |
[8] | W.Y.Kim, H.S.Kim, T.Y.Ra, H.J.Bang, Y.G.Yoo, I.D.Yeo. High Temperature Mechanical Properties of Ni-Al-Cr Based Alloys for Advanced Die-Materials Applications [J]. J Mater Sci Technol, 2008, 24(03): 305-308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||