J. Mater. Sci. Technol. ›› 2021, Vol. 73: 91-100.DOI: 10.1016/j.jmst.2020.07.045
• Research Article • Previous Articles Next Articles
P.L. Niua,b, W.Y. Lia,*(
), D.L. Chenb,*(
)
Received:2019-09-15
Revised:2020-07-02
Accepted:2020-07-29
Published:2020-09-28
Online:2020-09-28
Contact:
W.Y. Li,D.L. Chen
About author:dchen@ryerson.ca (D.L. Chen).P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect[J]. J. Mater. Sci. Technol., 2021, 73: 91-100.
Fig. 1. EBSD orientation maps of different zones across the joint cross-section: (a) AA2024 BM; (b) AA2024 TMAZ; (c) AA2024 SZ; (d) AA7075 BM; (e) AA7075 TMAZ; (f) AA7075 SZ.
Fig. 2. Local misorientation or KAM (Kernel Average Misorientation) maps across the joint cross-section: (a) AA2024 BM; (b) AA2024 TMAZ; (c) AA2024 SZ; (d) AA7075 BM; (e) AA7075 TMAZ; (f) AA7075 SZ.
Fig. 3. Cyclic deformation response of the FSWed joint: (a) stress amplitude vs. the number of cycles; (b) plastic strain amplitude vs. the number of cycles.
| Total strain amplitude (%) | Cyclic hardening amount (MPa) | Cyclic hardening rate (MPa/s) |
|---|---|---|
| 0.3 | 1.8 | 4.5 × 10-4 |
| 0.4 | 18.0 | 33.8 × 10-4 |
| 0.5 | 20.5 | 30.8 × 10-4 |
Table 1 Cyclic hardening amount and rate of the FSWed dissimilar joints of AA2024-T351 to AA7075-T65 aluminum alloys at different total strain amplitudes applied during cyclic deformation to 1000 cycles.
| Total strain amplitude (%) | Cyclic hardening amount (MPa) | Cyclic hardening rate (MPa/s) |
|---|---|---|
| 0.3 | 1.8 | 4.5 × 10-4 |
| 0.4 | 18.0 | 33.8 × 10-4 |
| 0.5 | 20.5 | 30.8 × 10-4 |
Fig. 4. Cyclic deformation response of the FSWed joint at a total strain amplitude of 0.5 %: (a) stress amplitude vs. number of cycles; (b) plastic strain amplitude vs. number of cycles.
Fig. 5. Tensile results of the FSWed joints after pre-cyclic deformation and base materials: (a) engineering stress-engineering strain curves; (b) tensile strength and percent elongation.
Fig. 8. Cross-sectional fracture location of joints in different states: (a) as-welded joint; (b) pre-cyclically deformed joint with 100 cycles; (c) pre-cyclically deformed joint with 500 cycles.
Fig. 9. Square of the average absolute value of cyclic hardening increment (Δσ)2 vs. cumulative plastic strain at various strain rates at the total strain amplitudes of (a) 0.4 % and (b) 0.5 %, and Bauschinger stress at a total strain amplitude of 0.5 % at the strain rates of (c) 1 × 10-2 s-1 and (d) 3 × 10-3 s-1.
Fig. 10. Cross-sectional Vickers microhardness maps (a, b) of the joint and TEM bright-field images of the LHZ (c, d): (a) as-welded joint, (b) cyclically-deformed joint, (c) TEM image of the LHZ of AA2024 side, and (d) TEM image of the LHZ of AA7075 side.
Fig. 11. TEM images of the AA2024 HAZ after 500 cycles cyclic deformation: (a) dislocation structures; (b) dark field image of S phase; (c) HRTEM image of the dislocations and S phases; (d) HRTEM image of S phase.
Fig. 12. The evolution of experimental (a) and calculated stresses (b, c, d) of each cycle during cyclic deformation: (a) cyclic hardening stress, (b) internal stress, (c) decrease of internal stress, and (d) stress increment due to slip irreversibility.
| [1] |
C.R. Hutchinson, F. de Geuser, Y. Chen, A. Deschamps, Acta Mater. 74 (2014) 96-109.
DOI URL |
| [2] |
J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775-5799.
DOI URL |
| [3] |
J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, J. Wei, Mater. Des. 56 (2014) 185-192.
DOI URL |
| [4] | Z.J. Shen, Q.Q. Ding, C.H. Liu, J.W. Wang, H. Tian, J.X. Li, Z. Zhang, J. Mater. Sci. Technol. 33 (2017) 1159-1164. |
| [5] | N. Kashaev, V. Ventzke, G Çam, J.Manuf. Process. 36 (2018) 571-600. |
| [6] |
G. Çam, G. İpekoğlu, Int. J. Adv. Manuf. Technol. 91 (5-8) (2017) 1851-1866.
DOI URL |
| [7] |
G. Çam, Int. Mater. Rev. 56 (1) (2011) 1-48.
DOI URL |
| [8] |
U. Donatus, G.E. Thompson, X. Zhou, J. Wang, K. Beamish, Mater. Des. 83 (2015) 203-213.
DOI URL |
| [9] |
B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, L. Wang, D. Wu, Mater. Des. 87 (2015) 593-599.
DOI URL |
| [10] |
N.S. Sundaram, N. Murugan, Mater. Des. 31 (2010) 4184-4193.
DOI URL |
| [11] |
H.J. Aval, Mater. Des. 87 (2015) 405-413.
DOI URL |
| [12] |
U. Donatus, G.E. Thompson, X. Zhou, Scr. Mater. 123 (2016) 126-129.
DOI URL |
| [13] |
J. Jiang, T.B.B. Britton, A.J. Wilkinson, Acta Mater. 94 (2015) 193-204.
DOI URL |
| [14] |
Y. EI-Madhoun, A. Mohamed, M.N. Bassim, Mater. Sci. Eng. A 359 (2003) 220-227.
DOI URL |
| [15] |
Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature 551 (2017) 214-217.
DOI URL |
| [16] | A.H. Feng, D.L. Chen, Z.Y. Ma, Metall. Mater. Trans. A 41 A (2010) 957-971. |
| [17] |
W.F. Xu, J.H. Liu, D.L. Chen, G.H. Luan, J.S. Yao, Scr. Mater. 66 (2012) 5-8.
DOI URL |
| [18] |
R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, L. Garcia, Mater. Sci. Eng. A 654 (2016) 236-248.
DOI URL |
| [19] |
S.T. Filho, S Sheikhi, dos J.F Santos, C Bolfarini, J. Mater. Process. Technol. 206 (2008) 132-142.
DOI URL |
| [20] |
W.W. Sun, Y.M. Zhu, R. Marceau, L.Y. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972-975.
DOI URL |
| [21] | S. Suresh, Fatigue of Materials, 2nd ed, Cambridge University Press, Cambridge, 1998. |
| [22] |
S. Shao, M.M. Khonsan, J. Wang, N. Shamsael, N. Li, Mater. Res. Lett. 6 (2018) 390-397.
DOI URL |
| [23] | B. Yan, A. Hunsche, P. Neumann, C. Laird, Mater. Sci. Eng. 79 (1986) 9-14. |
| [24] |
H. Mayer, C. Laird, Mater. Sci. Eng. A 187 (1994) 23-35.
DOI URL |
| [25] |
Z.X. Zhao, H.M. Liang, Y. Zhao, K. Yan, J. Mater. Eng. Perform. 27 (2018) 1777-1783.
DOI URL |
| [26] |
E. Sharghi, A. Farzadi, J. Alloys Compd. 748 (2018) 953-960.
DOI URL |
| [27] |
R. Badji, T. Chauveau, B. Bacroix, Mater. Sci. Eng. A 575 (2013) 94-103.
DOI URL |
| [28] |
P.L. Niu, W.Y. Li, A. Vairis, D.L. Chen, Mater. Sci. Eng. A 744 (2019) 145-153.
DOI URL |
| [29] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
| [30] | R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Mater. Sci. Eng. A 524 (2010) 5246-5254. |
| [31] |
C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, D.L. Chen, Acta Mater. 154 (2018) 311-324.
DOI URL |
| [32] | G. Guichon, J. Chicois, C. Esnouf, Fatigue 84, Engineering Materials Advisory Services Ltd, Warley U.K, 1984. |
| [33] |
T. Hanlon, Y.N. Kwon, S. Suresh, Scr. Mater. 49 (2003) 675-680.
DOI URL |
| [34] |
A.O. Mohamed, Y. EL-Madhoun, M.N. Bassim, Metall. Mater. Trans. A 37 (2006) 3441-3443.
DOI URL |
| [35] |
M.K. Wong, W.P. Kao, J.T. Lui, C.P. Chang, P.W. Kao, Acta Mater. 55 (2007) 715-725.
DOI URL |
| [36] | G. İpekoğlu, G. Çam, Metall. Mater. Trans. A 45A (2014) 3074-3087. |
| [37] | G. çam, V. Ventzke, J.F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, C. Rivezla, Prakt. Metallogr. 36 (2) (1999) 59-89. |
| [38] |
G. çam, G. İpekoğlu, H.T. Serindağ, Sci. Technol. Weld. Join. 19 (2014) 715-720.
DOI URL |
| [39] | G. İpekoğlu, B.G. Kıral, S. Erim, G. çam, Mater. Tehnol. 46 (2012) 627-632. |
| [40] |
M. Jobba, R.K. Mishra, M. Niewczas, Inter. J. Plasticity 65 (2015) 43-60.
DOI URL |
| [41] |
P.L. Niu, W.Y. Li, D.L. Chen, Mater. Lett. 231 (2018) 68-71.
DOI URL |
| [42] |
Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, K.S. Wang, Z.Y. Ma, J. Mater. Process. Technol. 264 (2019) 336-345.
DOI URL |
| [43] |
Z. Zhang, B.L. Xiao, Z.Y. Ma, Acta Mater. 73 (2014) 227-239.
DOI URL |
| [44] |
P.L. Niu, W.Y. Li, Z.H. Zhang, X.W. Yang, J. Mater. Sci. Technol. 33 (2017) 987-990.
DOI URL |
| [45] |
Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Acta Mater. 92 (2015) 117-125.
DOI URL |
| [46] |
B.A. McWilliams, J.H. Yu, C.F. Yen, Mater. Sci. Eng. A 585 (2013) 243-252.
DOI URL |
| [47] |
H.J. Aval, Mater. Des. 87 (2015) 405-413.
DOI URL |
| [48] |
A. Barbini, J. Carstensen, J.F dos Santos, J. Mater. Sci. Technol. 34 (2018) 119-127.
DOI URL |
| [49] |
W.Z. Han, A. Vinogradov, C.R. Hutchinson, Acta Mater. 59 (2011) 3720-3736.
DOI URL |
| [50] |
H. Mughrabi, H.W. Höppel, Int. J. Fatigue 32 (2010) 1413-1427.
DOI URL |
| [51] |
L.M. Brown, D.R. Clarke, Acta Metall. 23 (1975) 821-830.
DOI URL |
| [52] |
J. da Costa Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, Acta Mater. 56 (2008) 6109-6122.
DOI URL |
| [53] |
C. Genevois, A. Deschamps, A. Denquin, B Doisneau-cottignies, Acta Mater. 53 (2005) 2447-2458.
DOI URL |
| [1] | Wei Hu, Zhongwei Ma, Shude Ji, Qi Song, Mingfei Chen, Wenhui Jiang. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. J. Mater. Sci. Technol., 2020, 53(0): 41-52. |
| [2] | Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study [J]. J. Mater. Sci. Technol., 2020, 46(0): 168-176. |
| [3] | S.C. Han, L.H. Wu, C.Y. Jiang, N. Li, C.L. Jia, P. Xue, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment [J]. J. Mater. Sci. Technol., 2020, 50(0): 103-114. |
| [4] | Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43(0): 1-13. |
| [5] | Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding [J]. J. Mater. Sci. Technol., 2020, 45(0): 162-175. |
| [6] | Shihao Li, Ning Gao, Weizhong Han. In-situ study of initiation and extension of nano-thick defect-free channels in irradiated nickel [J]. J. Mater. Sci. Technol., 2020, 58(0): 114-119. |
| [7] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
| [8] | Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding [J]. J. Mater. Sci. Technol., 2019, 35(7): 1261-1269. |
| [9] | H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1278-1283. |
| [10] | X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method [J]. J. Mater. Sci. Technol., 2019, 35(7): 1412-1421. |
| [11] | X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions [J]. J. Mater. Sci. Technol., 2019, 35(6): 972-981. |
| [12] | Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy [J]. J. Mater. Sci. Technol., 2019, 35(5): 784-789. |
| [13] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
| [14] | M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(4): 491-498. |
| [15] | Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding [J]. J. Mater. Sci. Technol., 2019, 35(1): 94-99. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
