Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (7): 1412-1421    DOI: 10.1016/j.jmst.2019.01.018
Orginal Article Current Issue | Archive | Adv Search |
Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method
X.C. Liuab*, Y.F. Sunac, T. Nagiraa, K. Ushiodaa, H. Fujiia**
aJoining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
bSchool of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China;
cSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
Download:  HTML  PDF(12456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure considering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool ‘stop action’ and rapid cooling were employed and a brass foil was used as a marker to show the material flow path. The grain structure along the material flow path was characterised using electron backscatter diffraction. Static recrystallization occurs for the work-hardened base material in the preheating stage in front of the tool. In the acceleration flow stage, grains are significantly refined by plastic deformation, discontinuous dynamic recrystallization, annealing twinning during the strain-induced boundary migration and slight continuous dynamic recrystallization. In the deceleration flow stage, due to a strain reversal, the grain first coarsens, and is thereafter refined again. Finally, the hot-deformed material in the shoulder-affected zone is ‘frozen’ directly whereas that in the probe-affected zone undergoes significant annealing; thus, the recrystallized microstructure and 45°-rotated cube texture are obtained in the probe-affected zone.

Key words:  Friction stir welding      Grain structure      Material flow      Pure copper      EBSD     
Received:  29 November 2018     
Corresponding Authors:  Liu X.C.,Fujii H.   
About author: 

1These authors contributed equally to this work.

Cite this article: 

X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. J. Mater. Sci. Technol., 2019, 35(7): 1412-1421.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2019.01.018     OR     https://www.jmst.org/EN/Y2019/V35/I7/1412

Fig. 1.  Horizontal and longitudinal cross-sections of the keyhole showing the rotation flow zone by the tool traversing two dissimilar copper alloys (800 rpm-100 mm/min).
Fig. 2.  Schematic of the experiment.
Fig. 3.  Material flow features, strain and strain rate distributions on the keyhole horizontal planes [23]: (a) and (c) are the material flow on the 0.5-mm-plane and the corresponding strain, material flow velocity and strain rate, respectively; (b) and (d) are the material flow on the 2.5-mm-plane and the corresponding strain and strain rate, respectively.
Fig. 4.  Microstructural features of the base material (a-d) and the preheating stage (e-h) (x = -7, 0.5-mm-plane): (a, e) EBSD orientation map; (b, f) grain boundaries map; (c, g) misorientation distribution; (d, h) (001) PF. Note: the welding direction (WD) is the same as the rolling direction (RD) of the base material.
Fig. 5.  Variations in the grain size, LABs fraction and TBs fraction with respect to the accumulative true strain at the acceleration stage: (a) 0.5-mm-plane; (b) 2.5-mm-plane. Note: the error bars are based on multiple measurements.
Fig. 6.  Variations in the grain structure on the 0.5-mm-plane at the acceleration stage shown by the EBSD orientation maps (a-c) and grain boundary maps (d-f): (a, d) ε=0.06, x = -4; (b, e) ε=0.92, x = -2; (c, f) ε=1.45, x = -0.5.
Fig. 7.  Variations in the grain structure on the 2.5-mm-plane at the acceleration stage shown by the EBSD orientation maps (a-d) and grain boundary maps (e-h): (a, e) ε=0.05, x = -3; (b, f) ε=0.10, x = -2.5; (c, g) ε=0.32, x = -2; (d, h)ε≈1.03, x =-1.5.
Fig. 8.  Mechanisms of the grain structure evolution at the acceleration stage: (a, d) IPF maps of the local microstructures; (b, e) the corresponding grain boundary maps and (c, f) KAM maps; (g-i) grain boundary maps showing perfect twins evolving into common grains; in the grain boundary maps, the blue, red and green lines represent HABs, LABs and Σ3 TBs, respectively; in the KAM maps, the black lines represent HABs.
Fig. 9.  Orientation relationship between the recrystallized grains and the deformed grains (x = -2.5, 2.5-mm-plane): (a) EBSD image quality map of the recrystallized grains (orientation spread<2°); (b) (001) PF in the SD and SPN; (c) inverse PF in the normal direction; (d) EBSD image quality map of the deformed grains (orientation spread>2°); (e) (111) PF in the SD and SPN; (f) inverse PF in the shear direction; red lines denote LABs, blue lines denote HABs and green lines denote Σ3 TBs.
Fig. 10.  Microstructural features at the high-velocity flow stage: (a, c) the 0.5-mm-plane, x = 0; (b, d) the 2.5-mm-plane, x = 1; (a, b) grain boundary map; (c, d) misorientation distribution.
Fig. 11.  Variations in the statistical grain size, LABs fraction and Σ3 TBs fraction with respect to the accumulative true strain at the deceleration stage on the 0.5-mm-plane. Note: the error bars are based on multiple measurements.
Fig. 12.  Variations in the grain structure at the deceleration stage on the 0.5-mm-plane shown by the EBSD orientation maps (a-d) and grain boundary maps (e-h): (a, e) ε=1.62, x = 1; (b, f) ε=2.02, x = 2; (c, g) ε=2.54, x = 3; (d, h) ε=2.69, x = 4.
x value (mm) 2 4 6 8
Grain size (μm) 1.49 1.64 1.82 2.03
LABs fraction 0.383 0.156 0.109 0.092
Σ3 fraction 0.047 0.243 0.317 0.367
Table 1  Variations in the statistic grain size, LABs fraction and Σ3 TBs fraction at the annealing stage on the 2.5-mm-plane.
Fig. 13.  Grain structures (a1, b1) and corresponding orientation distribution functions (a2, b2) at the annealing stage (2.5-mm-plane): (a1, 2) x = 2; (b1, 2) x = 8. (Note: the R-cube here denotes the 45° rotated cube).
[1] G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34(2018) 1-38
[2] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Prog. Mater. Sci. 53(2008) 980-1023
[3] J. Defalco, Weld. J. 85(2005) 42-44
[4] A. Arora, Z. Zhang, A. De, T. DebRoy, Scr. Mater. 61(2009) 863-866
[5] J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma, L.J. Guo, J. Mater. Sci. Technol. 34(2018) 219-227
[6] A. Barbini, J. Carstensen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 119-127
[7] Y. Ni, L. Fu, H.Y. Chen, J. Mater. Process. Technol. 265(2019) 63-70
[8] S. Mironov, Y.S. Sato, H. Kokawa Acta Mater. 56(2008) 2602-2614
[9] S. Mironov, T. Onuma, Y.S. Sato, H. Kokawa, Acta Mater. 100(2015) 301-312
[10] S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa, Philos. Mag. 95(2015) 367-381
[11] P.B. Prangnell, C.P. Heason Acta Mater. 53(2005) 3179-3192
[12] N. Xu, R. Ueji, H. Fujii, J. Mater. Process. Technol. 232(2016) 90-99
[13] F.C. Liu, T.W. Nelson, Mater. Des. 115(2017) 467-478
[14] J.Q. Su, T.W. Nelson, C.J. Sterling, Mater. Sci. Eng. A 405 (2005) 277-286
[15] R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy Acta Mater. 55(2007) 883-895
[16] Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, M. Tanaka, Scr. Mater. 65(2011) 1085-1088
[17] X.C. Liu, Y.F. Sun, Y. Morisada, H. Fujii, J. Mater. Process. Technol. 252(2018) 643-651
[18] X.C. Liu, C.S. Wu, G.K. Padhy, Scr. Mater. 102(2015) 95-98
[19] Y. Morisada, T. Imaizumi, H. Fujii, Scr. Mater. 106(2015) 57-60
[20] G.Q. Chen, Q.Y. Shi, Y.J. Li, Y.J. Sun, Q.L. Dai, J.Y. Jia, Y.C. Zhu, J.J. Wu, Comput. Mater. Sci. 79(2013) 540-546
[21] H.H. Cho, S.T. Hong, J.H. Roh, H.S. Choi, S.H. Kang, R.J. Steel, H.N. Han, Acta Mater. 61(2013) 2649-2661
[22] L. Shi, C.S. Wu, J. Manuf. Process. 25(2017) 323-339
[23] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, Sci. Technol. Weld. Join. 24(2019) 352-359
[24] H.N.B. Schmidt, T.L. Dickerson, J.H. Hattel, Acta Mater. 54(2006) 1199-1209
[25] H. Fujii, Y.D. Chung, Y.F. Sun, Sci. Technol. Weld. Join. 18(2013) 500-506
[26] P. Xue, B.L. Xiao, Q. Zhang, Z.Y. Ma, Scr. Mater. 64(2011) 1051-1054
[27] P. Xue, B.L. Xiao, Z.Y. Ma, J. Mater. Sci. Technol. 29(2013) 1111-1115
[28] S.H. Huang, D.Y. Shu, C.K. Hu, S.F. Zhu, Trans. Nonferrous Met. Soc. China, 26(2016) 1044-1054
[29] R.L. Zhao, Y. Liu, B.H. Tian, X.W. Zhang, Y. Zhang, Heat Treat. Met. 36(2011) 17-20
[30] Y.H. Xiao, C. Guo, X.Y. Guo, Mater. Sci. Eng. A, 528(2011) 6510-6518
[31] X.C. Liu, C.S. Wu, J. Mater. Process. Technol. 225(2015) 32-44
[32] X.C. Liu, C.S. Wu, Mater. Des. 90(2016) 350-358
[33] Y. Jin, Diss. Ecole Nationale Supérieure des Mines de Paris 2014
[34] D.N. Lee, Scr. Metall. Mater. 32(1995) 1689-1694
[35] D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson, Acta Mater. 57(2009) 5218-5228
[36] S. Gourdet, F. Montheillet, Mater. Sci. Eng. A 283 (2000) 274-288
[37] M.R. Barnett, F. Montheillet, Acta Mater. 50(2002) 2285-2296
[38] A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Philos. Mag. A 81 (2001) 2629-2643
[39] A.M. Wusatowska, H. Miura, T. Sakai, Mater. Sci. Eng. A 323 (2002) 177-186
[40] H. Miura, T. Sakai, R. Mogawa, J.J. Jonas, Philos. Mag. 87(2007) 4197-4209
[41] K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54(2006) 5281-5291
[42] F. Zhang, X. Feng, Z. Yang, J. Kang, T. Wang, Sci. Rep. 5(2015), p. 8981
[43] S. Li, I.J. Beyerlein, M.A.M. Bourke, Mater. Sci. Eng. A, 394(2005) 66-77
[44] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki, Acta Mater. 50(2002) 1547-1557
[45] A. Takayama, X. Yang, H. Miura, T. Sakai, Mater. Sci. Eng. A 478 (2008) 221-228
[46] D. Orlov, P.P. Bhattacharjee, Y. Todaka, M. Umemoto, N. Tsuji, Scr. Mater. 60(2009) 893-896
[47] E. Lindh, B. Hutchinson, S. Ueyama, Scr. Metall. Mater. 29(1993) 347-352
[48] A. Gholinia, P.B. Prangnell, M.V. Markushev, Acta Mater. 48(2000) 1115-1130
[49] D. Orlov, Y. Todaka, M. Umemoto, N. Tsuji, Mater. Sci. Eng. A 499 (2009) 427-433
[50] E. Bagherpour, F. Qods, R. Ebrahimi, H. Miyamoto, Mater. Sci. Eng. A 666 (2016) 324-338
[51] H. Sheikh, R. Ebrahimi Int. J. Solids, Struct. 126(2017) 175-186
[52] X.C. Liu, Y.F. Sun, H. Fujii, Mater. Des. 129(2017) 151-163
[53] D. Yi, S. Mironov, Y.S. Sato, H. Kokawa, Philos. Mag. 96(2016) 1965-1977
[54] X.C. Liu, Y.F. Sun, T. Nagira, H. Fujii, Mater. Charact. 137(2018) 24-38
[55] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, J. Mater. Sci. 53(2018) 10423-10441
[1] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[2] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[3] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[4] Mengcheng Zhou, Xinfang Zhang. Optimization of <001> grain gene based on texture hereditary behavior of magnetic materials[J]. 材料科学与技术, 2020, 38(0): 1-6.
[5] Yingdong Zhang, Fusen Yuan, Fuzhou Han, Muhammad Ali, Wenbin Guo, Geping Li, Chengze Liu, Hengfei Gu. The influence of microtexture on the formation mechanism of nodules in Zircaloy-4 alloy tube[J]. 材料科学与技术, 2020, 47(0): 68-75.
[6] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[7] Yongxian Huang, Yuming Xie, Xiangchen Meng, Junchen Li, Li Zhou. Joint formation mechanism of high depth-to-width ratio friction stir welding[J]. 材料科学与技术, 2019, 35(7): 1261-1269.
[8] H. Zhang, P. Xue, D. Wang, L.H. Wu, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effect of heat-input on pitting corrosion behavior of friction stir welded high nitrogen stainless steel[J]. 材料科学与技术, 2019, 35(7): 1278-1283.
[9] X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions[J]. 材料科学与技术, 2019, 35(6): 972-981.
[10] Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy[J]. 材料科学与技术, 2019, 35(5): 784-789.
[11] X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites[J]. 材料科学与技术, 2019, 35(5): 824-832.
[12] Daudi Waryoba, Zahabul Islam, Baoming Wang, Aman Haque. Low temperature annealing of metals with electrical wind force effects[J]. 材料科学与技术, 2019, 35(4): 465-472.
[13] M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel[J]. 材料科学与技术, 2019, 35(4): 491-498.
[14] Z.B. Zhao, Z. Liu, Q.J. Wang, J.R. Liu, R. Yang. Analysis of local crystallographic orientation in an annealed Ti60 billet[J]. 材料科学与技术, 2019, 35(4): 591-595.
[15] Xiaocui Li, Jingwei Li, Bo Zhou, Mingchao Yu, Manling Sui. Interaction of {11$\bar{2}$2} twin variants in hexagonal close-packed titanium[J]. 材料科学与技术, 2019, 35(4): 660-666.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.