Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (5): 784-789    DOI: 10.1016/j.jmst.2018.10.027
Orginal Article Current Issue | Archive | Adv Search |
On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy
Q. Chua, W.Y. Lia?(), H.L. Houb, X.W. Yanga, A. Vairisac, C. Wangb, W.B. Wangb
a State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi’an,710072, China;
b Beijing Aeronautical Manufacturing Technology Research Institute, Beijing, 100024, China
c Mechanical Engineering Department, TEI of Crete, Heraklion, Crete, 71004, Greece
Download:  HTML  PDF(2559KB) 
Export:  BibTeX | EndNote (RIS)      

Double-side probeless friction stir spot welding (DP-FSSW) of AA2198 alloy was conducted to investigate the microstructure and mechanical properties. Compared with common single-side probeless friction stir spot welding (P-FSSW), the plastic strain during DP-FSSW is nearly symmetrical with respect to the bondline to suppress the extension of hook defect, which is detrimental to the joint mechanical strength. With DP-FSSW, a fully metallurgically bonded region has formed due to severe plastic deformation at high temperatures. Tensile/shear tests show that the joint strength could exceed 8kN, which is comparable to P-FSSW and refill FSSW, and all fractures happen in a shear failure mode as cracks extend along the interface of two sheets. The microhardness profile exhibits a uniform distribution along the thickness direction, in which the hook defect shows the lowest value.

Key words:  Friction stir welding      Double-side      Al-Li alloy      Microstructure      Mechanical property     
Received:  25 March 2018     
Corresponding Authors:  Li W.Y.     E-mail:
About author: 

1 These authors contribute equally to this paper.

Cite this article: 

Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang. On the double-side probeless friction stir spot welding of AA2198 Al-Li alloy. J. Mater. Sci. Technol., 2019, 35(5): 784-789.

URL:     OR

Fig. 1  (a) Macrostructure, distributions of (b) temperature (TEMP), (c) plastic strain (PE) of a typical P-FSSWed joint and (d) plastic strain (PE) distribution of a DP-FSSWed joint.
Fig. 2  (a) DP-FSSW process and (b) geometry of the specimen.
Material A B C m n Tr (°C) Tm (°C)
2198 510 200 0.02 1.61 0.45 25 502
Table 1  Constants for Johnson-Cook material model.
Fig. 3  Optical macrographs of cross-section of DP-FSSWed joint for 950?rpm/15?s: (a) full view, (b) SZ (region B), (c) TMAZ (region C), (d) HAZ (region D), (e) region E and (f) region F.
Fig. 4  Microhardness distribution in the cross-section of DP-FSSWed joint for 950?rpm/15?s.
Fig. 5  Mechanical strength of DP-FSSWed joints.
Fig. 6  Fractographs of DP-FSSWed joints: (a) 950?rpm/15?s and (b) 1500?rpm/9?s, and fractographs of P-FSSWed joints: (c) 950?rpm/6?s and (d) 950?rpm/15?s.
Fig. 7  Magnified micrographs of regions A-F in Fig. 6: (a) region A, (b) region B, (c) region C, (d) region D, (e) region E, and (f) region F.
[1] F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, J. dos Santos, Mater.Des. 86(2015)933-940.
[2] E. Gumbmann, W. Lefebvre, F.D. Geuser, C. Sigli, A. Deschamps, Acta Mater.115(2016) 104-114.
[3] Y. Yang, L.L. Zhou, J. Mater.Sci.Technol. 30(2014) 1251-1254.
[4] R. Xiao, X. Zhang, J. Manuf.Process. 16(2014) 166-175.
[5] C. Gao, Z.X. Zhu, J. Han, H.J. Li, Mater. Sci. Eng. A 639 (2015) 489-499.
[6] J.H. Cho, H.H. Sang, G.L. Chang, Mater. Lett. 180(2016) 157-161.
[7] F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater.Sci.Technol. 34(2018) 39-57.
[8] Y.M. Yue, Z.W. Li, S.D. Ji, Y.X. Huang, Z.L. Zhou, J. Mater.Sci.Technol. 32(2016)671-675.
[9] Z.H. Zhang, W.Y. Li, F.F. Wang, J.L. Li, Mater. Lett. 162(2016) 94-96.
[10] R.S. Mishra, Z.Y. Ma, Mat. Sci. Eng. R 50 (2005) 1-78.
[11] G.K. Padhy, C.S. Wu, S. Gao, J. Mater.Sci.Technol. 34(2018) 1-38.
[12] G.Q. Wang, Y.H. Zhao, Y.F. Hao, J. Mater.Sci.Technol. 34(2018) 73-91.
[13] R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, J. Mater.Sci.Technol. 32(2016)76-88.
[14] J. Gonc?alves, J.F.D. Santos, L.B. Canto, S.T. Amancio-Filho, Mater. Lett. 159(2015) 3-4.
[15] W.Y. Li, J.F. Li, Z.H. Zhang, D.L. Gao, W.B. Wang, C.L. Dong, Mater. Des. 62(2014) 247-254.
[16] Y. Morisada, T. Imaizumi, H. Fujii, Scr. Mater. 106(2015) 57-60.
[17] H.J. Liu, Y.Y. Hu, Y.X. Peng, C. Dou, Z.G. Wang, J. Mater.Process.Technol. 238(2016) 244-254.
[18] J.Y. Cao, M. Wang, L. Kong, L.J. Guo, J. Mater.Process.Technol. 230(2016)254-262.
[19] W.Y. Li, Q. Chu, X.W. Yang, J.J. Shen, A. Vairis, W.B. Wang, J. Mater.Process.Technol. 252(2017) 69-80.
[20] T. Rosendo, B. Parra, M.A.D. Tier, A.A.M.D. Silva, J.F.D. Santos, T.R. Strohaecker,N.G. Alcantara, Mater. Des. 32(2011) 1094-1100.
[21] F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 135-139.
[22] C.D. Cox, B.T. Gibson, D.R. Delapp, A.M. Strauss, G.E. Cook, J. Manuf.Process. 16(2014) 241-247.
[23] N. Hfaiedh, P. Peyre, H.B. Song, I. Popa, V. Ji, V. Vignal,Int. J. Fatigue 70 (2015)480-2489.
[24] J.Y. Cao, M. Wang, L. Kong, Y.H. Yin, L.J. Guo, Int. J. Adv. Manuf. Technol. 89(2017) 2129-2139.
[25] R.F. Huang, S.D. Ji, X.C. Meng, J. Mater.Process.Technol. 255(2018) 765-772.
[26] Y.X. Huang, X.C. Meng, Y.B. Zhang, J. Cao, J.C. Feng, J. Mater.Process.Technol.250(2017) 313-319.
[27] Y. Tozaki, Y. Uematsu, K. Tokaji, J. Mater.Process.Technol. 210(2010)844-851.
[28] G.Q. Chen, Q.X. Ma, S. Zhang, J.J. Wu, G. Zhang, Q.Y. Shi, J. Mater.Sci.Technol.34(2018) 128-134.
[29] H.Y. Chen, L. Fu, P. Liang, F.J. Liu, Mater. Charact. 125(2017) 160-173.
[30] B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li, H.P. Li, J. Alloys.Compd. 649(2015) 19-27.
[31] H.Y. Li, D.S. Huang, W. Kang, J.J. Liu, Y.X. Ou, D.W. Li, J. Mater.Sci.Technol. 32(2016) 1049-1053.
[32] B. Malard, F.D. Geuser, A. Deschamps, Acta Mater. 101(2015) 90-100.
[33] H. Sidhar, N.Y. Martinez, R.S. Mishra, J. Silvanus, Mater. Des. 106(2016)146-152.
[34] Y. Lin, Z. Zheng, Mater. Charact. 123(2017) 307-314.
[35] E. Oladimeji, E. Taban, Kaluc, Mater. Des. 108(2016) 518-528.
[36] Y. Uematsu, T. Kakiuchi, Y. Tozaki, H. Kojin, Sci. Technol. Weld. Joint. 17(2013) 348-356.
[37] M.D. Tier, T.S. Rosendo, J.F.D. Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, T.R. Strohaecker, J. Mater. Process. Technol. 213(2013) 997-1005.
[38] Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, Y.H. Yin, Mater. Des. 54(2014)766-778.
[39] Z.K. Shen, X.Q. Yang, Z.H. Zhang, L. Cui, T.L. Li, Mater. Des. 44(2013) 476-486.
[40] A. Reilly, H. Shercliff, Y. Chen, P. Prangnell, J. Mater.Process.Technol. 225(2015) 473-484.
[41] Q. Chu, X.W. Yang, W.Y. Li, Y.B. Li, Sci. Technol. Weld. Joi. 21(2016)164-170.
[1] S.M. Liang, H.M. Ji, X.W. Li. Thickness-dependent mechanical properties of nacre in Cristaria plicata shell: Critical role of interfaces[J]. 材料科学与技术, 2020, 44(0): 1-8.
[2] Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation[J]. 材料科学与技术, 2020, 45(0): 49-58.
[3] L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao. Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys[J]. 材料科学与技术, 2020, 42(0): 85-96.
[4] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[5] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
[6] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[7] P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems[J]. 材料科学与技术, 2020, 45(0): 215-229.
[8] Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming[J]. 材料科学与技术, 2020, 45(0): 23-34.
[9] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[10] Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel[J]. 材料科学与技术, 2020, 46(0): 191-200.
[11] Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys[J]. 材料科学与技术, 2020, 47(0): 142-151.
[12] Huihong Liu, Yo Aoki, Yasuhiro Aoki, Kohsaku Ushioda, Hidetoshi Fujii. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel[J]. 材料科学与技术, 2020, 46(0): 211-224.
[13] Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment[J]. 材料科学与技术, 2020, 43(0): 208-219.
[14] Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. 材料科学与技术, 2020, 40(0): 1-14.
[15] Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties[J]. 材料科学与技术, 2020, 40(0): 15-23.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.