Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (6): 972-981    DOI: 10.1016/j.jmst.2018.12.024
Current Issue | Archive | Adv Search |
Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions
X.H. Zengab, P. Xuea, L.H. Wua*(), D.R. Nia, B.L. Xiaoa, K.S. Wangc, Z.Y. Maa*()
a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Download:  HTML  PDF(4098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural evolution during friction stir welding (FSW) has long been studied only using one single welding parameter. Conclusions were usually made based on the final microstructure observation and hence were one-sided. In this study, we used the “take-action” technique to freeze the microstructure of an Al-Mg-Si alloy during FSW, and then systematically investigated the microstructures along the material flow path under different tool rotation rates and cooling conditions. A universal characteristic of the microstructural evolution including four stages was identified, i.e. dynamic recovery (DRV), dislocation multiplication, new grain formation and grain growth. However, the dynamic recrystallization (DRX) mechanisms in FSW depended on the welding condition. For the air cooling condition, the DRX mechanisms were related to continuous DRX associated with subgrain rotation and geometric DRX at high and low rotation rates, respectively. Under the water cooling condition, we found a new DRX mechanism associated with the progressive lattice rotation resulting from the pinning of the second-phase particles. Based on the analyses of the influencing factors of grain refinement, it was clearly demonstrated that the delay of DRV and DRX was the efficient method to refine the grains during FSW. Besides, ultra-high strain rate and a short duration at high temperatures were the key factors to produce an ultrafine-grained material.

Key words:  Aluminum alloys      Grain refinement      Dynamic recrystallization      Severe plastic deformation      Friction stir welding     
Received:  21 October 2018     
Corresponding Authors:  Wu L.H.,Ma Z.Y.     E-mail:  lhwu@imr.ac.cn;zyma@imr.ac.cn
About author: 

1The authors contributed equally to this work.

Cite this article: 

X.H. Zeng, P. Xue, L.H. Wu, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructural evolution of aluminum alloy during friction stir welding under different tool rotation rates and cooling conditions. J. Mater. Sci. Technol., 2019, 35(6): 972-981.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2018.12.024     OR     https://www.jmst.org/EN/Y2019/V35/I6/972

Fig. 1.  (a) Sampling schematics for TEM examinations, (b) schematic illustration of material flow around the pin, (c) the placement of vickers hardness tests in the “take-action” samples and (d) the placement of thermocouples shown by the red dot.
Fig. 2.  Macrostructural characteristics of FSW 6061Al-T6: (a) 1000-A, (b) 400-A, and (c) 400-W.
Fig. 3.  Typical TEM images showing microstructures in (a) R1, (b) R2, (c) R3, (d) R4, (e) R5 and (f) R15 of 1000-A sample. Statistical distributions of grain size in (g) R4, (h) R5 and (i) R15.
Fig. 4.  Typical TEM images showing microstructures in (a) R1, (b) R2, (c) R3, (d) R4, (e) R5 and (f) R15 of 400-A sample. Statistical distributions of grain size in (g) R4, (h) R5 and (i) R15.
Fig. 5.  Typical TEM images showing microstructures in (a) R1, (b) R2, (c) R3, (d) R4, (e) R5 and (f) R15 of 400-W sample. Statistical distributions of grain size in (g) R4, (h) R5 and (i) R15.
Fig. 6.  Microhardness profiles of FSW samples at different welding and cooling conditions.
Fig. 7.  Temperature histories of FSW samples under different FSW conditions.
Fig. 8.  (a) Schematic illustration of grain evolution in 1000-A sample, (b) and (c) typical microstructures in R1.
Fig. 9.  (a) Schematic illustration of grain evolution in 400-A sample, (b) EBSD map of R1 and (c) typical microstructures in R3.
Fig. 10.  (a) Schematic illustration of grain evolution in 400-W sample, (b) and (c) typical microstructures in R4.
Fig. 11.  (a) Progress of grain evolution during FSW, (b) schematic illustration of microstructural characteristics in different regions of 1000-A, 400-A and 400-W samples.
Fig. 12.  (a) Grain sizes of FSW samples in different regions, (b) final grain size as a function of temperature during SPD.
Fabrication method Strain Strain rate (s-1) Minimum
grain size (nm)
Grain shape Ref.
ARB 4 <10 300 equiaxed [46]
ECAP 8 - 200 equiaxed [45]
HPT 100 <25 100 equiaxed [36]
FSW 35 75 80 equiaxed/ elongated [27,28]
SMAT (pure Al) 20-45 $\widetilde{1}$03 30 elongated/lamellar [47]
Table 1  The effects of strain and strain rate on the minimum grain size and grain shape of SPD Al-Mg-Si alloys or pure Al.
Fig. 13.  A map of grain evolution modes and grain sizes in FSW Al alloys.
[1] G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34 (2018) 1-38.
[2] L.H. Wu, K. Nagatsuka, K. Nakata, J. Mater. Sci. Technol. 34 (2018) 1628-1637.
[3] P. Xue, Z.Y. Huang, B.B. Wang, Y.Z. Tian, W.G. Wang, B.L. Xiao, Z.Y. Ma, Sci. China Mater. 59 (7) (2016), pp. 531-537.
[4] W.F. Xu, Y.X. Luo, W. Zhang, M.W. Fu, J. Mater. Sci. Technol. 34 (2018) 173-184.
[5] L.H. Wu, H. Zhang, X.H. Zeng, P. Xue, B.L. Xiao, Z.Y. Ma, Sci. China Mater. 61 (3) (2018), pp. 417-442.
[6] W.F. Xu, Y.X. Luo, M.W. Fu, Mater. Charact. 138 (2018) 48-55.
[7] A.H. Feng, Z.Y. Ma, Scr. Mater. 56 (2007) 397-400.
[8] C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34 (2018) 112-118.
[9] J.Q. Su, T.W. Nelson, C.J. Sterling, Mater. Sci. Eng. A 405 (2005) 277-286.
[10] R.S. Mishra, Z.Y. Ma, I. Charit, Mater. Sci. Eng. A 341 (2003) 307-310.
[11] H.J. Zhang, H.J. Liu, L. Yu, Sci. Technol. Weld. Join. 16 (2011) 459-464.
[12] B.B. Wang, F.F. Chen, F. Liu, W.G. Wang, P. Xue, Z.Y. Ma, J. Mater. Sci. Technol. 33 (2017) 1009-1014.
[13] A. Yazdipour, A. Shafiei, M.K. Dehghani, Mater. Sci. Eng. A 527 (2009) 192-197.
[14] K.V. Jata, S.L. Semiatin, Scr. Mater. 43 (2000) 743-749.
[15] C. Rhodes, Scr. Mater. 48 (2003) 1451-1455.
[16] T.R. McNelley, S. Swaminathan, J.Q. Su, Scr. Mater. 58 (2008) 349-354.
[17] X. Sauvage, A. Dédé, A.C. Mu?oz, B. Huneau, Mater. Sci. Eng. A 491 (2008) 364-371.
[18] P.B. Prangnell, C.P. Heason, Acta Mater. 53 (2005) 3179-3192.
[19] H.M. Chan, F.J. Humphreys, Acta Metall. 32 (1984) 235-243.
[20] S. Chen, X. Jiang, Mater. Sci. Eng. A 612 (2014) 267-277.
[21] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Oxford(2004) pp. 415-467.
[22] X.H. Zeng, P. Xue, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma, Sci. Technol. Weld. Joining, 23 (6) (2018), pp. 478-486.
[23] D. Yi, S. Mironov, Y.S. Sato, H. Kokawa, Philos. Mag. Abingdon (Abingdon) 96 (2016) 1965-1977.
[24] X.C. Liu, Y.F. Sun, H. Fujii, Mater. Des. 129 (2017) 151-163.
[25] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux, J. Mater. Process. Tech. 171 (2006) 348-357.
[26] J. Han, J. Chen, L. Peng, S. Tan, Y. Wu, F. Zheng, H. Yi, Mater. Des. 130 (2017) 90-102.
[27] X.C. Liu, C.S. Wu, G.K. Padhy, Scr. Mater. 102 (2015) 95-98.
[28] S. Xu, X.M. Deng, Acta Mater. 56 (2008) 1326-1341.
[29] X.H. Zeng, P. Xue, D. Wang, D.R. Ni, B.L. xiao, Z.Y. Ma, Metall. Mater. Trans. A 49 (2018) 2673-2683.
[30] W.J. Kim, J.Y. Wang, Mater. Sci. Eng. A 464 (2007) 23-27.
[31] G. Sha, K. Tugcu, X.Z. Liao, P.W. Trimby, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, Acta Mater. 63 (2014) 169-179.
[32] F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris, Philos. Trans. Math. Phys. Eng. Sci. 357 (1999) 1663-1681.
[33] M. Wen, G. Liu, Jf. Gu, W.M. Guan, J. Lu, Appl. Surf. Sci. 255 (2009) 6097-6102.
[34] J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Acta Mater. 58 (2010) 3984-3994.
[35] B. Derby, Acta Metall. Mater. 39 (1991) 955-962.
[36] X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Acta Mater. 98 (2015) 355-366.
[37] P. Xue, B.L. Xiao, Q. Zhang, Z.Y. Ma, Scr. Mater. 64 (2011) 1051-1054.
[38] M.R. Drury, F.J. Humphreys, Acta Metall. 34 (1986) 2259-2271.
[39] A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323 (2002) 177-186.
[40] X.X. Zhang, B.L. Xiao, Z.Y. Ma, Metall. Mater. Trans. A 42 (2011) 3229-3239.
[41] X.C. Liu, H.W. Zhang, K. Lu, Acta Mater. 96 (2015) 24-36.
[42] A.M. Mavlyutov, A.S. Bondarenko, M.Y. Murashkin, E.V. Boltynjuk, R.Z. Valiev, T.S. Orlova, J. Alloys. Compd. 698 (2017) 539-546.
[43] R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mater. 8 (2006) 1046-1056.
[44] S.Y. Chang, K.S. Lee, S.H. Choi, D. Hyuk Shin, J. Alloys. Compd. 354 (2003) 216-220.
[45] N.V. Thuong, H. Zuhailawati, A.A. Seman, T.D. Huy, B.K. Dhindaw, Mater. Des. 67 (2015) 448-456.
[46] M.R. Rezaei, M.R. Toroghinejad, F. Ashrafizadeh, J. Mater. Process. Tech. 211 (2011) 1184-1190.
[47] X.C. Liu, H.W. Zhang, K. Lu, Science 342 (2013) 337-340.
[48] Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 59 (2011) 6048-6058.
[1] Wei Chen, Hande Wang, Y.C. Lin, Xiaoyong Zhang, Chao Chen, Yaping Lv, Kechao Zhou. The dynamic responses of lamellar and equiaxed near β-Ti alloys subjected to multi-pass cross rolling[J]. 材料科学与技术, 2020, 43(0): 220-229.
[2] Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study[J]. 材料科学与技术, 2020, 46(0): 168-176.
[3] Zhen Ma, Huarui Zhang, Wei Song, Xiaoyan Wu, Lina Jia, Hu Zhang. Pressure-driven mold filling model of aluminum alloy melt/semi-solid slurry based on rheological behavior[J]. 材料科学与技术, 2020, 39(0): 14-21.
[4] S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings[J]. 材料科学与技术, 2020, 39(0): 183-189.
[5] S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings[J]. 材料科学与技术, 2020, 39(0): 7-13.
[6] Liying Zhou, Wenxiong Chen, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Dynamic recrystallization behavior and interfacial bonding mechanism of 14Cr ferrite steel during hot deformation bonding[J]. 材料科学与技术, 2020, 43(0): 92-103.
[7] Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints[J]. 材料科学与技术, 2020, 43(0): 1-13.
[8] XiTing Zhong, Lei Wang, LinKe Huang, Feng Liu. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy[J]. 材料科学与技术, 2020, 42(0): 241-253.
[9] Mariana X. Milagre, Uyime Donatus, Naga V. Mogili, Rejane Maria P. Silva, Bárbara Victória G. de Viveiros, Victor F. Pereira, Renato A. Antunes, Caruline S.C. Machado, João Victor S. Araujo, Isolda Costa. Galvanic and asymmetry effects on the local electrochemical behavior of the 2098-T351 alloy welded by friction stir welding[J]. 材料科学与技术, 2020, 45(0): 162-175.
[10] Jian Yang Zhang, Bin Xu, Naeemul Haq Tariq, MingYue Sun, DianZhong Li, Yi Yi Li. Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding[J]. 材料科学与技术, 2020, 46(0): 1-11.
[11] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[12] Liang Wu, Yugang Li, Xianfeng Li, Naiheng Ma, Haowei Wang. Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening[J]. 材料科学与技术, 2020, 46(0): 44-49.
[13] Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys[J]. 材料科学与技术, 2020, 40(0): 54-63.
[14] C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates[J]. 材料科学与技术, 2020, 41(0): 105-116.
[15] Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process[J]. 材料科学与技术, 2020, 42(0): 17-27.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.