Please wait a minute...
J. Mater. Sci. Technol.  2019, Vol. 35 Issue (1): 94-99    DOI: 10.1016/j.jmst.2018.09.022
Orginal Article Current Issue | Archive | Adv Search |
A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding
Zhongwei Ma, Yanye Jin, Shude Ji*(), Xiangchen Meng*(), Lin Ma, Qinghua Li
School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
Download:  HTML  PDF(2983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultrasonic assisted friction stir welding (UaFSW) was used to join 6061-T6 aluminum and Ti6Al4V alloys. A small plunge depth endowed with the low heat input was used and the sound joints without obvious thickness reduction were achieved. A diffusion-type bonding without the intermetallic compounds layer was observed at the joint interface. The ultrasonic improved the diffusion thickness and decreased the average size of grains and titanium alloy fragments. A hook-like structure was formed at the bottom interface of the UaFSW joint, which improved the bonding length and the mechanical interlocking. The microhardness of the stir zone was increased because of the further grain refinement induced by ultrasonic. The maximum tensile strength of the UaFSW joint was 236 MPa, which reached 85% of the base 6061-T6 alloy.

Key words:  Friction stir welding      Ultrasonic      Aluminum/titanium alloys      Microstructure      Mechanical properties     
Received:  04 April 2018     
Corresponding Authors:  Ji Shude,Meng Xiangchen     E-mail:  superjsd@163.com;mengxch2013@163.com

Cite this article: 

Zhongwei Ma, Yanye Jin, Shude Ji, Xiangchen Meng, Lin Ma, Qinghua Li. A general strategy for the reliable joining of Al/Ti dissimilar alloys via ultrasonic assisted friction stir welding. J. Mater. Sci. Technol., 2019, 35(1): 94-99.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2018.09.022     OR     https://www.jmst.org/EN/Y2019/V35/I1/94

Fig. 1.  (a) Schematic of UaFSW and (b) size of tensile specimen.
Fig. 2.  Macrostructures: (a) conventional FSW and (b) UaFSW; enlarged interfaces: (c) conventional FSW and (d) UaFSW; (e) r values of conventional FSW and UaFSW.
Fig. 3.  (a) and (b) microstructures marked in Fig. 2(a) and (b); grains in the SZ of (c) conventional FSW and (d) UaFSW joints.
Fig. 4.  EDS analysis of joint interface: (a) SEM image and (b) line scanning results of conventional FSW joint; (c) SEM image and (d) line scanning results of UaFSW joint.
Fig. 5.  Microhardness distribution on cross section of conventional FSW and UaFSW joints.
Fig. 6.  (a) Engineering stress-strain curves and (b) tensile strength.
Fig. 7.  Fracture locations of (a) conventional FSW and (b) UaFSW joints; (c) fracture morphology of conventional FSW joint; (d) and (e) enlarged views marked in Fig. 7(c); (f) fracture morphology of UaFSW joint; (g) enlarged view marked in Fig. 7(f).
[1] Z.H. Song, K. Nakata, A.P. Wu, J.S. Liao, L. Zhou, Mater. Des. 57(2014) 269-278.
[2] H.S. Bang, H.S. Bang, H.J. Song, S.M. Joo, Mater. Des. 51(2013) 544-551.
[3] Y.X. Huang, Z.L. Lv, L. Wan, J.J. Shen, J.F. Santos, Mater. Lett. 207(2017)172-175.
[4] A.P. Wu, Z.H. Song, K. Nakata, J.S. Liao, L. Zhou, Mater. Des. 71(2015) 85-92.
[5] Z.H. Zhang, B. Li, X.M. Feng, Y.F. Shen, W.Y. Hu, Proc. Inst. Mech. Eng. Part. B-J.Eng. Manuf. 228 (11) (2014) 1469-1480.
[6] B. Li, Z.H. Zhang, Y.F. Shen, W.Y. Hu, L. Luo, Mater. Des. 53(2014) 838-848.
[7] Y.C. Kim, A. Fuji, Sci, Technol. Weld. Join. 7(2002) 149-154.
[8] P.L. Niu, W.Y. Li, Z.H. Zhang, X.W. Yang, J. Mater. Sci.Technol. 33(2017)987-990.
[9] F.F. Wang, W.Y. Li, J. Shen, Q. Wen, J.F. dos Santos, J.Mater. Sci. Technol. 34(2018) 134-139.
[10] Z.W. Li, Y.M. Yue, S.D. J, S.S. Gao, P. Chai, L. Wang, Mater. Des. 94(2016)368-376.
[11] H.B. Li, Z.H. Jiang, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, J.Z. Li, Mater Des 84(2015) 291-299.
[12] X.C. Liu, C.S. Wu, Mater. Des. 90(2016) 350-358.
[13] M. Thom?, G.Wagner, B. Stra?, B. Wolter, S. Benfer, W. Fürbeth, J. Mater. Sci.Technol. 34(2018) 163-172.
[14] G.K. Padhy, C.S. Wu, S. Gao, Mater. Des. 116(2017) 207-218.
[15] S.D. Ji, X.C. Meng, Z.L. Liu, R.F. Huang, Z.W. Li, Mater. Lett.201 (2017) 173-176.
[15] X.C. Meng, Y.Y. Jin, S.D. Ji, D.J. Yan,J.Mater. Sci. Technol. 34(2018)1817-1822.
[17] Y.B. Zhong, C.S. Wu, G.K. Padhy, J. Mater, Process. Technol. 239(2017)273-283.
[18] R.L. Lai, D.Q. He, L.C. Liu, S.Y. Ye, K.Y. Yang, Int. J. Adv. Manuf. Technol. 73(2014) 321-327.
[19] Z.L. Liu, X.C. Meng, S.D. Ji, Z.W. Li, L. Wang, J. Manuf.Process. 31(2018)552-559.
[20] A. Scialpi, M. De Giorgi, L.A.C.De Filippis, R.Nobile, F.M. Panella, Mater. Des.29(2008) 928-936.
[21] A. Scialpi, L.A.C.De Filippis, P.Cuomo, P. Di Summa, Weld. Int. 22(2008)16-22.
[22] Y.X. Huang, X.C. Meng, Y.B. Zhang, J. Cao, J.C. Feng, J. Mater. Process.Technol.250(2017) 313-319.
[23] K. Sithole, V.V. Rao,IOP Conf. Ser.: Mater. Sci. Eng. 114 (1) (2018), 012036.
[24] H.J. Liu, H. Fuji, M. Maeda, K. Nogi, J. Mater, Process. Technol. 142(2003)692-696.
[25] Y.C. Chen, H.J. Liu, J.C. Feng, Mater. Sci. Eng. A420 (2006) 21-25.
[26] S.D. Ji, Z.W. Li, Y. Wang, L. Ma, Mater. Des. 113(2017) 37-46.
[27] S.D. Ji, Z.W. Li, L.G. Zhang, Y. Wang, Mater. Lett. 188(2017) 21-24.
[28] L. Wan, Y.X. Huang, W.Q. Guo, S.X. Lv, J.C. Feng, J. Mater. Sci.Technol. 30(2014) 1243-1250.
[29] U. Dressler, G. Biallas, U.A. Mercado, Mater. Sci. Eng. A526 (2009) 113-117.
[30] M. Thom?, G. Wagner, B. Stra?, B. Wolter, S. Benfer, W. Fürbeth,IOP. Conf. Ser.:Mater. Sci. Eng. 181 (1) (2017), 012003.
[31] X.C. Liu, C.S. Wu, G.K. Padhy, Scr. Mater. 102(2015) 95-98.
[32] Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Acta Mater. 92(2015)117-125.
[33] Y.M. Yue, Z.W. Li, S.D. Ji, Y.X. Huang, Z.Z. Lu, J. Mater. Sci.Technol. 32(2016)671-675.
[34] H.B. Li, Z.H. Jiang, S.C. Zhang, L. Li, P.D. Han, R.D.K.Misra, J.Z. Li, Mater. Des. 84(2015) 291-299.
[35] P. He, X. Yue, J.H. Zhang, Mater. Sci. Eng. A486 (2008), 171-19-76.
[36] W. Yao, A. Wu, G. Zou, J. Ren, Mater. Sci. Eng. A480 (2008) 456-463.
[37] P. Dong, H.G. Li, D.Q. Sun, W.B. Gong, J. Liu, Mater. Des. 45(2013) 524-531.
[38] W.B. Lee, Y.M. Yeon, S.B. Jung, J. Mater.Sci. 38(2003) 4183-4191.
[39] J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, J. Wei, Mater. Des. 56(2014)185-192.
[40] Q. Wen, Y.M. Yue, S.D. Ji, Z.W. Li, S.S. Gao, High Temp, Mater. Proc. 35(2016)375-379.
[1] Jifeng Zhang, Ting Jia, Huan Qiu, Heguo Zhu, Zonghan Xie. Effect of cooling rate upon the microstructure and mechanical properties of in-situ TiC reinforced high entropy alloy CoCrFeNi[J]. 材料科学与技术, 2020, 42(0): 122-129.
[2] Yanfu Chai, Chao He, Bin Jiang, Jie Fu, Zhongtao Jiang, Qingshan Yang, Haoran Sheng, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy[J]. 材料科学与技术, 2020, 37(0): 26-37.
[3] Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. 材料科学与技术, 2020, 37(0): 143-153.
[4] Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration[J]. 材料科学与技术, 2020, 38(0): 39-46.
[5] Xingrui Chen, Shaochen Ning, Qichi Le, Henan Wang, Qi Zou, Ruizhen Guo, Jian Hou, Yonghui Jia, Andrej Atrens, Fuxiao Yu. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries[J]. 材料科学与技术, 2020, 38(0): 47-55.
[6] Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties[J]. 材料科学与技术, 2020, 38(0): 86-92.
[7] Liu Weifeng, Cao Yanfei, Guo Yifeng, Sun Mingyue, Xu Bin, Li Dianzhong. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state[J]. 材料科学与技术, 2020, 38(0): 170-182.
[8] Varma S.K., Sanchez Francelia, Moncayo Sabastian, Ramana C.V.. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400 °C[J]. 材料科学与技术, 2020, 38(0): 189-196.
[9] A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity[J]. 材料科学与技术, 2020, 36(0): 1-6.
[10] P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 18-26.
[11] Maryam Jamalian, David P.Field. Gradient microstructure and enhanced mechanical performance of magnesium alloy by severe impact loading[J]. 材料科学与技术, 2020, 36(0): 45-49.
[12] H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu. Towards the diffusion source cost reduction for NdFeB grain boundary diffusion process[J]. 材料科学与技术, 2020, 36(0): 50-54.
[13] Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 7-17.
[14] Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting[J]. 材料科学与技术, 2020, 36(0): 106-117.
[15] Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing[J]. 材料科学与技术, 2020, 47(0): 20-28.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.