J. Mater. Sci. Technol. ›› 2021, Vol. 65: 108-117.DOI: 10.1016/j.jmst.2020.04.077
• Research Article • Previous Articles Next Articles
Mohammad Sharear Kabira,b,*(), Zhifeng Zhouc, Zonghan Xied,e, Paul Munroea
Received:
2020-02-21
Revised:
2020-04-08
Accepted:
2020-04-09
Published:
2021-02-28
Online:
2021-03-15
Contact:
Mohammad Sharear Kabir
About author:
* School of Materials Science and Engineering, Univer-sity of New South Wales, Sydney, NSW, 2052, Australia.E-mail address: mohammad.kabir@deakin.edu.au (M.S. Kabir).Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties[J]. J. Mater. Sci. Technol., 2021, 65: 108-117.
Fig. 2. (a) Ion induced SE micrograph of coating DLC-1, (b) XTEM bright field micrograph of coating DLC-4 (insert shows SAED pattern from the DLC multilayer. (c) XTEM bright field micrograph of coating DLC-4 showing the CrCx graded layer together with the Cr adhesive layer adjacent to the substrate.
Fig. 6. Raman analysis of the DLC coatings: (a) Visible Raman spectra of DLC coatings, (b) Gaussian fitting of the raw data and deconvolution into G peak and D peak [48].
Fig. 7. (a) FWHM of the G peak of as a function of negative bias voltage, (b) sp3 content vs FWHM(G) of DLC samples (quadratic fitting is shown as the red line) and (c) ID/IG ratio and graphite cluster size with respect to increasing negative bias voltage.
Fig. 8. (a) P vs h curves (load = 15 mN), (b) Hardness and (c) Modulus as a function of bias voltage, (d) Elastic strain to failure (H/E) (diamonds) and plastic deformation resistance (H3/E2) (stars) with respect to increasing bias voltage.
[1] |
M. Jelinek, T. Kocourek, J. Zemek, J. Mikšovský, Š. Kubinová, J. Remsa, J. Kopeček, K. Jurek, Mater. Sci. Eng. C 46 (2015) 381-386.
DOI URL |
[2] |
E.L. Dalibón, D. Heim, C. Forsich, A. Rosenkranz, M. Agustina Guitar, S.P. Brühl, Diam. Relat. Mater. 59 (2015) 73-79.
DOI URL |
[3] | Y. Iijima, T. Harigai, R. Isono, S. Degai, T. Tanimoto, Y. Suda, H. Takikawa, H. Yasui, S. Kaneko, S. Kunitsugu, M. Kamiya, M. Taki, AIP Conf. Proc. 1929 (2018) 020024. |
[4] |
F. Li, S. Zhang, J. Kong, Y. Zhang, W. Zhang, Thin Solid Films 519 (2011) 4910-4916.
DOI URL |
[5] |
J. Robertson, Thin Solid Films 383 (2001) 81-88.
DOI URL |
[6] | D. Franta, V. Burˇsíková, I. Ohlídal, L. Zajíˇcková, P. St_ahel, Diam.Relat. Mater. 14 (2005) 1795-1798. |
[7] |
A.W. Zia, S. Lee, J.-k. Kim, T.G. Kim, J. Song II, Surf. Interface Anal. 46 (2014) 152-156.
DOI URL |
[8] |
C. Guo, Z. Pei, J. Gong, C. Sun, S. Lin, Q. Shi, Diam. Relat. Mater. 92 (2019) 187-197.
DOI URL |
[9] |
Y. Lin, Z. Zhou, K.Y. Li, Appl. Surf. Sci. 477 (2019) 137-146.
DOI URL |
[10] |
X. Sui, J. Liu, S. Zhang, J. Yang, J. Hao, Appl. Surf. Sci. 439 (2018) 24-32.
DOI URL |
[11] |
D. Batory, T. Blaszczyk, M. Clapa, S. Mitura, J. Mater. Sci. 43 (2008) 3385-3391.
DOI URL |
[12] |
D. Bociaga, P. Komorowski, D. Batory, W. Szymanski, A. Olejnik, K. Jastrzebski, W. Jakubowski, Appl. Surf. Sci. 355 (2015) 388-397.
DOI URL |
[13] |
R. Hauert, K. Thorwarth, G. Thorwarth, Surf. Coat. Technol. 233 (2013) 119-130.
DOI URL |
[14] |
B.J. Jones, A. Mahendran, A.W. Anson, A.J. Reynolds, R. Bulpett, J. Franks, Diam. Relat. Mater. 19 (2010) 685-689.
DOI URL |
[15] |
C.A. Love, R.B. Cook, T.J. Harvey, P.A. Dearnley, R.J.K. Wood, Tribol. Int. 63 (2013) 141-150.
DOI URL |
[16] |
A. Erdemir, C. Donnet, J. Phys. D Appl. Phys.. 39 (2006) R311-R327.
DOI URL |
[17] |
Y. Lin, A.W. Zia, Z. Zhou, P.W. Shum, K.Y. Li, Surf. Coat. Technol. 320 (2017) 7-12.
DOI URL |
[18] |
D. Sheeja, B.K. Tay, S.P. Lau, X. Shi, X. Ding, Surf. Coat. Technol. 132 (2000) 228-232.
DOI URL |
[19] |
A.A. Voevodin, M.S. Donley, J.S. Zabinski, J.E. Bultman, Surf. Coat. Technol. 76-77 (1995) 534-539.
DOI URL |
[20] |
A.A. Voevodin, S.D. Walck, J.S. Zabinski, Wear 203-204 (1997) 516-527.
DOI URL |
[21] |
S. Zhang, X. Lam Bui, X.T. Zeng, X. Li, Thin Solid Films 482 (2005) 138-144.
DOI URL |
[22] |
Y.S. Zou, K. Zhou, Y.F. Wu, H. Yang, K. Cang, G.H. Song, Vacuum 86 (2012) 1141-1146.
DOI URL |
[23] |
A.G. Owens, S. Brühl, S. Simison, C. Forsich, D. Heim, Procedia Mater. Sci. 9 (2015) 246-253.
DOI URL |
[24] | C. Donnet, A. Erdemir, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer, US, 2007. |
[25] |
J. Chen, S.J. Bull, J. Phys. D Appl. Phys. 44 (2010) 034001.
DOI URL |
[26] |
A.A. Voevodin, J.S. Zabinski, Diam. Relat. Mater. 7 (1998) 463-467.
DOI URL |
[27] |
A.A. Voevodin, J.P. O’Neill, S.V. Prasad, J.S. Zabinski, J. Vacuum Sci. Technol. A 17 (1999) 986-992.
DOI URL |
[28] | F. Awaja, T.-T. Wong, D. Putzer, M. Thaler, A. al Taee, T. O’Brien, Mater. Today Commun. 19 (2019) 433-440. |
[29] |
W. Dai, X. Gao, J. Liu, S.-H. Kwon, Q. Wang, Appl. Surf. Sci. 425 (2017) 855-861.
DOI URL |
[30] |
F.D. Duminica, R. Belchi, L. Libralesso, D. Mercier, Surf. Coat. Technol. 337 (2018) 396-403.
DOI URL |
[31] |
L. Huang, J. Yuan, C. Li, D. Hong, Surf. Coat. Technol. 353 (2018) 163-170.
DOI URL |
[32] | N. Nemati, O.V. Penkov, D.-E. Kim, Surf.Coat. Technol. 385 (2020) 125446. |
[33] |
F.-e. Yang, S.-y. Yang, X.-x. Chang, W.-f. Yang, R.-g. Song, X.-h. Zheng, Surf. Coat. Technol. 374 (2019) 418-423.
DOI URL |
[34] |
J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Chem. Soc. Rev. 47 (2018) 1822-1873.
DOI URL PMID |
[35] |
A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
DOI URL |
[36] |
T. Paulmier, J.M. Bell, P.M. Fredericks, Thin Solid Films 515 (2007) 2926-2934.
DOI URL |
[37] |
B. Zhou, Z. Liu, D.G. Piliptsou, S. Yu, Z. Wang, A.V. Rogachev, A.S. Rudenkov, A. Balmakou, Diam. Relat. Mater. 69 (2016) 191-197.
DOI URL |
[38] | P. Binayak, Secondary Ion Mass Spectroscopy, ASM Handbook: Materials Characterization, ASM International, 2019. |
[39] |
J.M. Cairney, P.R. Munroe, M. Hoffman, Surf. Coat. Technol. 198 (2005) 165-168.
DOI URL |
[40] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
[41] | G.M. Pharr, W.C. Oliver, MRS Bull. 17 (1992) 28-33. |
[42] |
B.D. Beake, T.W. Liskiewicz, V.M. Vishnyakov, M.I. Davies, Surf. Coat. Technol. 284 (2015) 334-343.
DOI URL |
[43] |
J.W. Patten, Thin Solid Films 63 (1979) 121-129.
DOI URL |
[44] |
J. Robertson, Mater. Sci. Eng. R Rep. 37 (2002) 129-281.
DOI URL |
[45] |
S. Logothetidis, M. Gioti, C. Charitidis, P. Patsalas, J. Arvanitidis, J. Stoemenos, Appl. Surf. Sci. 138-139 (1999) 244-249.
DOI URL |
[46] | J.C. Vickerman, D. Briggs, ToF-SIMS: Surface Analysis by Mass Spectrometry, IM, 2001. |
[47] | I. Ahmad, P.D. Maguire, P. Lemoine, S.S. Roy, J.A. McLaughlin, Diam.Relat. Mater. 13 (2004) 1346-1349. |
[48] | L.R. Shaginyan, Chapter 13 in: H. Singh Nalwa (Ed.), Handbook of Thin Films, Academic Press, Burlington, 2002, pp. 627-673. |
[49] |
F.C. Tai, S.C. Lee, J. Chen, C. Wei, S.H. Chang, J. Raman Spectrosc. 40 (2009) 1055-1059.
DOI URL |
[50] |
A.C. Ferrari, S.E. Rodil, J. Robertson, Phys. Rev. B 67 (2003) 155306.
DOI URL |
[51] |
W.G. Cui, Q.B. Lai, L. Zhang, F.M. Wang, Surf. Coat. Technol. 205 (2010) 1995-1999.
DOI URL |
[52] |
A.C. Ferrari, Solid State Commun. 143 (2007) 47-57.
DOI URL |
[53] |
B.K. Tay, X. Shi, H.S. Tan, D.H.C. Chua, Surf. Interface Anal. 28 (1999) 231-234.
DOI URL |
[54] | F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126-1130. |
[55] |
X. Yu, M. Hua, C. Wang, J. Nanosci. Nanotechnol. 9 (2009) 6366-6371.
DOI URL PMID |
[56] |
A. Leyland, A. Matthews, Wear 246 (2000) 1-11.
DOI URL |
[57] |
S.J. Bull, E.G. Berasetegui, Tribol. Int. 39 (2006) 99-114.
DOI URL |
[58] |
H. Ollendorf, D. Schneider, Surf. Coat. Technol. 113 (1999) 86-102.
DOI URL |
[59] |
S.J. Bull, D.S. Rickerby, Surf. Coat. Technol. 42 (1990) 149-164.
DOI URL |
[60] |
P.A. Steinmann, Y. Tardy, H.E. Hintermann, Thin Solid Films 154 (1987) 333-349.
DOI URL |
[61] | A. Herrmann, DLC Coating Failure Using Micro Scratch Testing, NANOVEA, Irvine, CA, USA, 2013. |
[62] |
P.J. Burnett, D.S. Rickerby, Thin Solid Films 154 (1987) 403-416.
DOI URL |
[1] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[2] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[3] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[4] | Chaoyang Wang, Shengli Zhu, Yanqin Liang, Zhenduo Cui, Shuilin Wu, Chunling Qin, Shuiyuan Luo, Akihisa Inoue. Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects [J]. J. Mater. Sci. Technol., 2020, 53(0): 91-101. |
[5] | Wenyin Xue, Jinhua Zhou, Yongfeng Shen, Weina Zhang, Zhenyu Liu. Micromechanical behavior of a fine-grained China low activation martensitic (CLAM) steel [J]. J. Mater. Sci. Technol., 2019, 35(9): 1869-1876. |
[6] | T. Sapanathan, N. Jimenez-Mena, I. Sabirov, M.A. Monclús, J.M. Molina-Aldareguía, P. Xia, L. Zhao, A. Simar. A new physical simulation tool to predict the interface of dissimilar aluminum to steel welds performed by friction melt bonding [J]. J. Mater. Sci. Technol., 2019, 35(9): 2048-2057. |
[7] | Shao-Ping Wang, Jian Xu. Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation [J]. J. Mater. Sci. Technol., 2019, 35(5): 812-816. |
[8] | Hui Guo, Suode Zhang, Wenhai Sun, Jianqiang Wang. Differences in dry sliding wear behavior between HVAF-sprayed amorphous steel and crystalline stainless steel coatings [J]. J. Mater. Sci. Technol., 2019, 35(5): 865-874. |
[9] | L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 782-787. |
[10] | Guo Hui, Jiang Chuanbin, Yang Baijun, Wang Jianqiang. Deformation behavior of Al-rich metallic glasses under nanoindentation [J]. J. Mater. Sci. Technol., 2017, 33(11): 1272-1277. |
[11] | Abdur-Rasheed Alao, Ling Yin. Assessment of Elasticity, Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia Using Nanoindentation Techniques [J]. J. Mater. Sci. Technol., 2016, 32(5): 402-410. |
[12] | Je Jo Won,Ahn Hee-Jun,Hyoung Kim Jong,Kwon Dongil. Fracture Characteristics of Frit Bonding through In-Situ Nano-Indentation Testing [J]. J. Mater. Sci. Technol., 2016, 32(11): 1204-1210. |
[13] | Ankur Gupta, Swetha Barkam, Debrupa Lahiri, R. Balasubramaniam, Kantesh Balani. Effect of Alumina Dispersion on Microstructural and Nanomechanical Properties of Pulse Electrodeposited Nickel-Alumina Composite Coatings [J]. J. Mater. Sci. Technol., 2014, 30(8): 808-813. |
[14] | Ke H.B., Zeng J.F., Liu C.T., Yang Y.. Structure Heterogeneity in Metallic Glass: Modeling and Experiment [J]. J. Mater. Sci. Technol., 2014, 30(6): 560-565. |
[15] | Ankur Gupta, Garima Tripathi, Debrupa Lahiri, Kantesh Balani. Compression Molded Ultra High Molecular Weight Polyethylene- Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement [J]. J. Mater. Sci. Technol., 2013, 29(6): 514-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||