J. Mater. Sci. Technol. ›› 2021, Vol. 76: 189-199.DOI: 10.1016/j.jmst.2020.11.028
• Research Article • Previous Articles Next Articles
					
													Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai*( )
)
												  
						
						
						
					
				
Received:2020-05-29
															
							
																	Revised:2020-08-14
															
							
																	Accepted:2020-08-17
															
							
																	Published:2021-06-20
															
							
																	Online:2020-11-11
															
						Contact:
								Wei-Lin Dai   
													About author:*E-mail address: wldai@fudan.edu.cn (W.-L. Dai).Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production[J]. J. Mater. Sci. Technol., 2021, 76: 189-199.
| Sample | SBET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) | 
|---|---|---|---|
| UN | 732.5 | 0.46 | 2.49 | 
| ZIS | 74.4 | 0.10 | 12.2 | 
| UZ | 162.8 | 0.11 | 11.9 | 
| PUZ-3 | 165.2 | 0.32 | 7.79 | 
Table 1 The physical structural properties of UN, ZIS, UZ, and PUZ-3.
| Sample | SBET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) | 
|---|---|---|---|
| UN | 732.5 | 0.46 | 2.49 | 
| ZIS | 74.4 | 0.10 | 12.2 | 
| UZ | 162.8 | 0.11 | 11.9 | 
| PUZ-3 | 165.2 | 0.32 | 7.79 | 
 
																													Fig. 8. (a) Photocatalytic hydrogen production under visible-light irradiation, (b, c) hydrogen production rates of various photocatalysts, and (d) reusability of PUZ-3 for the photocatalytic hydrogen production.
| Wavelength (nm) | 320 | 400 | 420 | 450 | 
|---|---|---|---|---|
| QE (%) | 20.4 | 5.0 | 3.2 | 1.3 | 
Table 2 The quantum efficiency (QE) for PUZ-3.
| Wavelength (nm) | 320 | 400 | 420 | 450 | 
|---|---|---|---|---|
| QE (%) | 20.4 | 5.0 | 3.2 | 1.3 | 
| [1] | J.K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, J. Feldmann, ACS Catal., 8 (2018), pp. 3602-3635 DOI URL | 
| [2] | F.E. Osterloh, Chem. Soc. Rev., 43 (2013), pp. 2294-2320 | 
| [3] | Z. Wang, C. Li, K. Domen, Chem. Soc. Rev., 48 (2019), pp. 2109-2125 DOI URL | 
| [4] | X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 8 (2009), pp. 76-80 DOI URL | 
| [5] | L. Pan, J.H. Kim, M.T. Mayer, M.K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J. Luo, M. Grätzel, Nat. Catal., 1 (2018), pp. 412-420 DOI URL | 
| [6] | J. Yu, A. Kudo, Adv. Funct. Mater., 16 (2016), pp. 2163-2169 DOI URL | 
| [7] | C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy, 3 (2018), pp. 862-869 DOI URL | 
| [8] | J. Ren, W. Wang, S. Sun, L. Zhang, J. Chang, Appl. Catal. B, 92 (2009), pp. 50-55 DOI URL | 
| [9] | Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao, H. Yu, Appl. Catal. B, 241 (2018), pp. 236-245 DOI URL | 
| [10] | Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shibata, Y. Ikuhara, K. Domen, Nat. Catal., 1 (2018), pp. 756-763 DOI URL | 
| [11] | W.J. Youngblood, S.H.A. Lee, K. Maeda, T.E. Mallouk, Acc. Chem. Res., 42 (2009), pp. 1966-1973 DOI URL | 
| [12] | J. Willkomm, K.L. Orchard, A. Reynal, E. Pastor, J.R. Durrant, E. Reisner, Chem. Soc. Rev., 45 (2016), pp. 9-23 DOI PMID | 
| [13] | X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 8 (2009), pp. 76-80 DOI URL | 
| [14] | S. Shen, Qi. Wang, Chem. Mater., 25 (2013), pp. 1166-1178 DOI URL | 
| [15] | B. Mao, C.H. Chuang, J. Wang, C. Burda, J. Phys. Chem. C, 115 (2011), pp. 8945-8954 DOI URL | 
| [16] | C.J. Xing, Y.J. Zhang, W. Yan, L.J. Guo, Int. J. Hydrogen Energy, 31 (2006), pp. 2018-2024 DOI URL | 
| [17] | L. Shang, C. Zhou, T. Bian, H. Yu, L.Z. Wu, C.H. Tung, T. Zhang, J. Mater. Chem. A, 1 (2013), pp. 4552-4558 DOI URL | 
| [18] | W. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chem. Int. Ed., 55 (2016), pp. 6716-6720 DOI URL | 
| [19] | L. Zeng, X. Guo, C. He, C. Duan, ACS Catal., 6 (2016), pp. 7935-7947 DOI URL | 
| [20] | B. Liu, X. Liu, J. Liu, C. Feng, Z. Li, C. Li, Y. Gong, L. Pan, S. Xu, C.Q. Sun, Appl. Catal. B, 226 (2018), pp. 234-241 DOI URL | 
| [21] | H. Du, R.M. Kong, X. Guo, F. Qu, J. Li, Nanoscale, 10 (2018), pp. 21617-21624 DOI URL | 
| [22] | H. Wang, X.Z. Yuan, Y. Wu, G.M. Zeng, X.H. Chen, L.J. Leng, Z.B. Wu, L.B. Jiang, H. Li, J. Hazard. Mater., 286 (2015), pp. 187-194 DOI URL | 
| [23] | X.B. Wang, J. Liu, S. Leong, X.C. Lin, J. Wei, B. Kong, Y.F. Xu, Z.X. Low, J.F. Yao, H.T. Wang, ACS Appl. Mater. Interfaces, 8 (2016), pp. 9080-9087 DOI URL | 
| [24] | R. Li, J.H. Hu, M.S. Deng, H.L. Wang, X.J. Wang, Y.L. Hu, H.L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y.J. Xiong, Adv. Mater., 26 (2014), pp. 4783-4788 DOI URL | 
| [25] | Y.L. Xu, M.M. Lv, H.B. Yang, Q. Chen, X.T. Liu, F.Y. Wei, RSC Adv., 5 (2015), pp. 43473-43479 DOI URL | 
| [26] | Z. Sha, J. Sun, H. Chan, S. Jaenicke, J. Wu, RSC Adv., 4 (2014), pp. 64977-64984 DOI URL | 
| [27] | Z. Sha, J.S. Wu, RSC Adv., 5 (2015), pp. 39592-39600 DOI URL | 
| [28] | R. Wang, L.N. Gu, J.J. Zhou, X.L. Liu, F. Teng, C.H. Li, Y.H. Shen, Y.P. Yuan, Adv. Mater. Interfaces, 2 (2015), 1500037 DOI URL | 
| [29] | L.J. Shen, S.J. Liang, W.M. Wu, R.W. Liang, L. Wu, J. Mater. Chem. A, 1 (2013), pp. 11473-11482 DOI URL | 
| [30] | L.J. Shen, M.B. Luo, Y.H. Liu, R.W. Liang, F.F. Jing, L. Wu, Appl. Catal. B, 166 (2015), pp. 445-453 DOI URL | 
| [31] | Y. Su, Z. Zhang, H. Liu, Y. Wang, Appl. Catal. B, 200 (2017), pp. 448-457 DOI URL | 
| [32] | J.D. Xiao, H.L. Jiang, Acc. Chem. Res., 52 (2019), pp. 356-366 DOI URL | 
| [33] | L. Jiao, H.L. Jiang, Chem, 5 (2019), pp. 786-804 DOI URL | 
| [34] | K. Wu, J. Chen, J.R. McBride, T. Lian, Science, 349 (2015), pp. 632-635 DOI URL | 
| [35] | S. Han, S.C. Warren, S.M. Yoon, C.D. Malliakas, X. Hou, Y. Wei, M.G. Kanatzidis, B.A. Grzybowski, J. Am. Chem. Soc., 137 (2015), pp. 8169-8175 DOI URL | 
| [36] | C.H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys., 14 (2012), pp. 13120-13132 DOI URL | 
| [37] | M.E. Foster, J.D. Azoulay, B.M. Wong, M.D. Allendorf, Chem. Sci., 5 (2014), pp. 2081-2090 DOI URL | 
| [38] | Q. Liang, J. Jin, C. Liu, S. Xu, C. Yao, Z. Li, Inorg. Chem. Front., 5 (2018), pp. 335-343 DOI URL | 
| [39] | D. Sun, Z. Li, J. Phys. Chem. C, 120 (2016), pp. 19744-19750 DOI URL | 
| [40] | L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale, 5 (2013), pp. 9374-9382 DOI URL | 
| [41] | C. Chen, D. Chen, S. Xie, H. Quan, X. Luo, L. Guo, ACS Appl. Mater. Interfaces, 9 (2017), pp. 41043-41054 DOI URL | 
| [42] | H. Liu, J. Zhang, D. Ao, Appl. Catal. B, 221 (2018), pp. 433-442 DOI URL | 
| [43] | M. Lou, R. Wang, J. Zhang, X. Tang, L. Wang, Y. Guo, D. Jia, H. Shi, L. Yang, X. Wang, Z. Sun, T. Wang, Y. Huang, ACS Appl. Mater. Interfaces, 11 (2019), pp. 6431-6441 DOI URL | 
| [44] | S. Wan, Q. Zhong, M. Ou, S. Zhang, J. Mater. Sci., 52 (2017), pp. 11453-11466 DOI URL | 
| [45] | M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Chem. Mater., 22 (2010), pp. 6632-6640 | 
| [46] | B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan, T. Li, Adv. Mater., 24 (2012), pp. 3390-3395 DOI URL | 
| [47] | F. Yang, Q. Zhang, J. Zhang, L. Zhang, M. Cao, W.L. Dai, Appl. Catal. B, 278 (2020), 119290 DOI URL | 
| [48] | X. Li, G. Yang, S. Li, N. Xiao, N. Li, Y. Gao, D. Lv, L. Ge, Chem. Eng. J., 379 (2020), p. 122350 DOI URL | 
| [49] | A.F. Lee, J.N. Naughton, Z. Liu, K. Wilson, ACS Catal., 2 (2012), pp. 2235-2241 DOI URL | 
| [50] | H. Cho, V.T. Chen, S. Qiao, W. Koo, R.M. Penner, I. Kim, ACS Sens., 3 (2018), pp. 2152-2158 DOI URL | 
| [51] | X. Pan, H. Xu, X. Zhao, H. Zhang, ACS Sustainable Chem. Eng., 8 (2020), pp. 1087-1094 DOI URL | 
| [52] | H. Wang, X.Z. Yuan, Y. Wu, G.M. Zeng, X.H. Chen, L.J. Leng, H. Li, Appl. Catal. B, 174 (2015), pp. 445-454 | 
| [53] | C. Zhao, Y. Zhang, H. Jiang, J. Chen, Y. Liu, Q. Liang, M. Zhou, Z. Li, Y. Zhou, J. Phys. Chem. C, 123 (2019), pp. 18037-18049 DOI URL | 
| [54] | M. Luo, P. Lu, W. Yao, C. Huang, Q. Xu, Qi. Wu, Y. Kuwahara, H. Yamashita, ACS Appl. Mater. Interfaces, 8 (2016), pp. 20667-20674 DOI URL | 
| [55] | R. Su, R. Tiruvalam, A.J. Logsdail, Q. He, C.A. Downing, M.T. Jensen, N. Dimitratos, L. Kesavan, P.P. Wells, R. Bechstein, H.H. Jensen, S. Wendt, C.R.A. Catlow, C.J. Kiely, G.J. Hutchings, F. Besenbacher, ACS Nano, 8 (2014), pp. 3490-3497 DOI URL | 
| [56] | H.Q. Xu, S. Yang, X. Ma, J. Huang, H.L. Jiang, ACS Catal., 12 (2018), pp. 11615-11621 | 
| [57] | K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ., 84 (2007), pp. 685-688 DOI URL | 
| [58] | B. Bera, A. Chakraborty, T. Kar, P. Leuaa, M. Neergat, J. Phys. Chem. C, 121 (2017), pp. 20850-20856 DOI URL | 
| [59] | Y. Liao, B. Yuan, D. Zhang, J. Zhang, X. Wang, P. Deng, K. Zhang, H. Zhang, Q. Xiang, Z. Zhong, Inorg. Chem., 57 (2018), pp. 10249-10256 DOI URL | 
| [60] | Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu, X. Wang, Chem. Sci., 2 (2011), pp. 1826-1830 DOI URL | 
| [61] | K. Maeda, K. Sekizawa, O. Ishitani, Chem. Commun., 49 (2013), pp. 10127-10129 DOI URL | 
| [62] | E. Hussain, I. Majeed, M.A. Nadeem, A. Badshah, Y. Chen, M.A. Nadeem, R. Jin, J. Phys. Chem. C, 120 (2016), pp. 17205-17213 DOI URL | 
| [63] | C.H. Hao, X.N. Guo, M. Sankar, H. Yang, B. Ma, Y.F. Zhang, X.L. Tong, G.Q. Jin, X.Y. Guo, ACS Appl. Mater. Interfaces, 10 (2018), pp. 23029-23036 DOI URL | 
| [1] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. | 
| [2] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			