J. Mater. Sci. Technol. ›› 2021, Vol. 74: 246-258.DOI: 10.1016/j.jmst.2020.10.035
• Research Article • Previous Articles
Lei Luoa,*(), Liangshun Luoa, Yanqing Sua,*(
), Lin Sub, Liang Wanga, Jingjie Guoa, Hengzhi Fua
Received:
2020-07-07
Revised:
2020-07-31
Accepted:
2020-08-11
Published:
2021-05-30
Online:
2020-10-20
Contact:
Lei Luo,Yanqing Su
About author:
suqhit@163.com (Y. Su).Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification[J]. J. Mater. Sci. Technol., 2021, 74: 246-258.
Fig. 1. Schematic diagrams of experiment and the selection of samples: (a) TMF process equipment with unidirectional solidification function. (b) The selection of samples for experiments and simulations [27].
Parameters | Symbol | Value |
---|---|---|
TMF inner diameter | Di, mm | 40 |
TMF outer diameter | Do, mm | 140 |
Number of windings | n | 600 |
Current frequency | f, Hz | 50 |
Phase sequence | - | Down-TMF: 0, 2π/3, 4π/3; Up-TMF: 4π/3, 2π/3, 0 |
Excitation current intensity | Ie, A | 20 |
Temperature gradient | GT, K mm-1 | 3 |
Cooling rate of alloys | vc, K s-1 | 0.5 |
Thermal Conductivity | CT, W mK-1 | 136 |
Magnetic permeability | μAl, H m-1 | 1.0 |
Viscosity coefficient | ƞ, Pa s | 1.25e-3 |
Electrical conductance | σ, S m-1 | 35.33e+6 |
Latent heat | Lm, kJ kg-1 | 396.09 |
Table 1 Related characteristics of the TMF generator and the parameters used in the simulations of TMF and flow fields [34,35].
Parameters | Symbol | Value |
---|---|---|
TMF inner diameter | Di, mm | 40 |
TMF outer diameter | Do, mm | 140 |
Number of windings | n | 600 |
Current frequency | f, Hz | 50 |
Phase sequence | - | Down-TMF: 0, 2π/3, 4π/3; Up-TMF: 4π/3, 2π/3, 0 |
Excitation current intensity | Ie, A | 20 |
Temperature gradient | GT, K mm-1 | 3 |
Cooling rate of alloys | vc, K s-1 | 0.5 |
Thermal Conductivity | CT, W mK-1 | 136 |
Magnetic permeability | μAl, H m-1 | 1.0 |
Viscosity coefficient | ƞ, Pa s | 1.25e-3 |
Electrical conductance | σ, S m-1 | 35.33e+6 |
Latent heat | Lm, kJ kg-1 | 396.09 |
Fig. 2. SEM images of alloy samples: (a), (b) and (c) the longitudinal sections by No-TMF, Up-TMF and Down-TMF, respectively. (d), (e) and (f) are the locally enlarged images for Square A, B and C, respectively. (g), (h) and (i) are the cross sections by No-TMF, Up-TMF and Down-TMF, respectively. (j), (k) and (l) are the locally enlarged images for Square D, E and F, respectively. (Note: Point denotes energy spectrum point).
Point number | Al | Cu | Ti | Mn |
---|---|---|---|---|
1 | 81.41 | 0.98 | 16.75 | 0.86 |
2 | 83.46 | 8.83 | 0.01 | 7.70 |
3 | 72.25 | 27.15 | 0.27 | 0.33 |
4 | 83.39 | 0.57 | 14.86 | 1.18 |
5 | 64.64 | 34.95 | 0.10 | 0.31 |
6 | 68.06 | 31.49 | 0.18 | 0.27 |
7 | 73.61 | 25.78 | 0.28 | 0.34 |
8 | 83.28 | 0.51 | 15.38 | 0.83 |
9 | 81.81 | 9.03 | 0.10 | 9.06 |
10 | 83.03 | 0.73 | 15.07 | 1.17 |
11 | 68.96 | 30.38 | 0.25 | 0.41 |
12 | 71.21 | 25.96 | 0.32 | 2.51 |
13 | 71.02 | 28.53 | 0.19 | 0.26 |
Table 2 EDS results for each energy spectrum point in Fig. 2 (at.%).
Point number | Al | Cu | Ti | Mn |
---|---|---|---|---|
1 | 81.41 | 0.98 | 16.75 | 0.86 |
2 | 83.46 | 8.83 | 0.01 | 7.70 |
3 | 72.25 | 27.15 | 0.27 | 0.33 |
4 | 83.39 | 0.57 | 14.86 | 1.18 |
5 | 64.64 | 34.95 | 0.10 | 0.31 |
6 | 68.06 | 31.49 | 0.18 | 0.27 |
7 | 73.61 | 25.78 | 0.28 | 0.34 |
8 | 83.28 | 0.51 | 15.38 | 0.83 |
9 | 81.81 | 9.03 | 0.10 | 9.06 |
10 | 83.03 | 0.73 | 15.07 | 1.17 |
11 | 68.96 | 30.38 | 0.25 | 0.41 |
12 | 71.21 | 25.96 | 0.32 | 2.51 |
13 | 71.02 | 28.53 | 0.19 | 0.26 |
Fig. 3. The composition and content of precipitation phases: (a) and (b) XRD maps of the cross and longitudinal sections, respectively. (c) The volume fraction of precipitation phase measured by EBSD.
Fig. 4. Statistical results of α-Al phase determined by EBSD: (a1), (b1) and (c1) the <001>- pole figures. (a2), (b2) and (c2) are the <001>-inverse pole figures. (a3), (b3) and (c3) are the grain figures. (d) Misorientation angles of α-Al phase. (e) Grain size of α-Al phase.
Fig. 9. Schematic diagrams of solidification process under different conditions: (a) Solidification path for ZL205A alloys. (b) Phase diagram curves of ZL205A alloys. (c) Distribution of solutes at the solid-liquid interface.
[1] |
D.F. Du, L. Hou, A. Gagnoud, Z. Ren, Y. Fautrelle, G.H. Cao, X. Li, J. Alloys. Compd. 588 (2014) 190-198.
DOI URL |
[2] |
J.M. Rosalie, L. Bourgeois, Acta Mater. 60 (2012) 6033-6041.
DOI URL |
[3] |
L. Gao, X.Q. Ou, S. Ni, K. Li, Y. Du, M. Song, Mater. Sci. Eng. A 762 (2019), 138091.
DOI URL |
[4] |
G. Liu, J. Sun, C.W. Nan, K.H. Chen, Acta Mater. 53 (2005) 3459-3468.
DOI URL |
[5] |
Z.M. Gao, W.Q. Jie, Y.Q. Liu, H.J. Luo, Acta Mater. 127 (2017) 277-286.
DOI URL |
[6] |
B. Li, Y.F. Shen, W.Y. Hu, Mater. Des. 32 (2011) 2570-2582.
DOI URL |
[7] |
M.N. Patel, D. Qiu, G. Wang, M.A. Gibson, A. Prasad, D.H. Stjohn, M.A. Easton, Scr. Mater. 178 (2020) 447-451.
DOI URL |
[8] |
A. Shaga, P. Shen, L.G. Xiao, R.F. Guo, Y.B. Liu, Q.C. Jiang, Mater. Sci. Eng. A 708 (2017) 199-207.
DOI URL |
[9] |
Q.L. Li, Y.S. Zhang, Y.F. Lan, Y.X. Zhang, T.D. Xia, J. Alloys. Compd. 831 (2020), 154739.
DOI URL |
[10] |
H. Elhadari, H. Patel, D. Chen, W. Kasprzak, Mater. Sci. Eng. A 528 (2011) 8128-8138.
DOI URL |
[11] |
J. Delahaye, J.T. Tchuindjang, J. Lecomte-Beckers, O. Rigo, A. Habraken, A. Mertens, Acta Mater. 175 (2019) 160-170.
DOI |
[12] |
H. Neumann-Heyme, K. Eckert, C. Beckermann, Acta Mater. 140 (2017) 87-96.
DOI URL |
[13] |
X. Li, Q. Cai, B. Zhao, Y. Xiao, B. Li, J. Alloys. Compd. 675 (2016) 201-210.
DOI URL |
[14] |
S. Liu, D. Zhang, J. Xiong, C. Chen, T. Song, L. Liu, S. Huang, J. Alloys. Compd. 781 (2019) 873-882.
DOI URL |
[15] |
X. Zhang, L. Huang, B. Zhang, Y. Chen, S. Duan, G. Liu, C. Yang, F. Liu, Mater. Sci. Eng. A 753 (2019) 168-178.
DOI URL |
[16] |
J. Gao, M. Han, A. Kao, K. Pericleous, D.V. Alexandrov, P.K. Galenko, Acta Mater. 103 (2016) 184-191.
DOI URL |
[17] | H. Wei, F. Xia, S. Qian, M. Wang, J. Mater, Proc. IEEE Int. Symp. Signal Proc. Inf. Tech. 240 (2017) 344-353. |
[18] |
F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, T. Connolley, Acta Mater. 141 (2017) 142-153.
DOI URL |
[19] |
C. Lin, S. Wu, S. Lü, P. An, L. Wan, J. Alloys. Compd. 568 (2013) 42-48.
DOI URL |
[20] | X.U. Bin, R.U.I. Zhi-yuan, Adv.Mater. Res. 1061 (2015) 465-470. |
[21] |
L.Q. Zhang, W.F. Tan, H. Hu, Heat Mass Transf. 52 (2016) 1131-1138.
DOI URL |
[22] |
H. Liu, Y. Gao, L. Qi, Y. Wang, J.F. Nie, Metall. Mater. Trans. A 46 (2015) 3287-3301.
DOI URL |
[23] |
D.V. Alexandrov, P.K. Galenko, Phys. Usp. 57 (2014) 771.
DOI URL |
[24] |
M.H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy, Int. J. Heat Fluid Flow 69 (2018) 9-22.
DOI URL |
[25] |
K. Zhang, Y. Li, Y. Yang, J. Mater, Sci. Technol. 48 (2020) 9-17.
DOI URL |
[26] | Y. Zhao, K. Wang, S. Yuan, Y. Ma, G. Li, Q. Wang, J. Mater, Sci. Technol. 46 (2020) 127-135. |
[27] | L. Luo, L.S. Luo, R.O. Ritchie, Y.Q. Su, B. Wang, L. Wang, R.R. Chen, J.J. Guo, H.Z. Fu, J. Mater, Sci. Technol. 61 (2021) 100-113. |
[28] |
E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, P. Grant, Acta Mater. 121 (2016) 384-395.
DOI URL |
[29] |
Y.Z. Li, N. Mangelinck-Noel, G. Zimmermann, L. Sturz, H. Nguyenthi, J. Alloys. Compd. 836 (2020), 155458.
DOI URL |
[30] |
G. Zimmermann, C. Pickmann, M. Hamacher, E. Schaberger-Zimmermann, H. Neumann-Heyme, K. Eckert, S. Eckert, Acta Mater. 126 (2017) 236-250.
DOI URL |
[31] |
D. Ruvalcaba, R. Mathiesen, D. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55 (2007) 4287-4292.
DOI URL |
[32] |
M. Dong, T. Liu, X. Guo, Y. Liu, S. Dong, Q. Wang, Mater. Sci. Eng. A 785 (2020), 139377.
DOI URL |
[33] |
B. Nawaz, X. Long, Z. Yang, J. Zhao, F. Zhang, J. Li, Mater. Sci. Eng. A 759 (2019) 11-18.
DOI URL |
[34] |
Z.Y. Li, X.F. Qi, L.J. Liu, G.S. Zhou, J. Cryst. Growth 484 (2018) 78-85.
DOI URL |
[35] |
P. Schwesig, M. Hainke, J. Friedrich, G. Mueller, J. Cryst. Growth 266 (2004) 224-228.
DOI URL |
[36] |
H. Yan, T. Gao, H. Zhang, J. Nie, X. Liu, J. Mater. Sci. Technol. 35 (2019) 374-382.
DOI URL |
[37] |
X. Yang, J. Zhu, W. Li, J. Mater. Sci. Technol. 31 (2015) 1320-1328.
DOI URL |
[38] |
B. Lin, R. Xu, H. Li, W. Zhang, J. Mater. Sci. Technol. 34 (2018) 1447-1459.
DOI URL |
[39] |
A.P. Boeira, I.L. Ferreira, A. Garcia, Mater. Des. 30 (2009) 2090-2098.
DOI URL |
[40] |
E. Cadirli, Met. Mater. Int. 19 (2013) 411-422.
DOI URL |
[41] | N.J. Petch, J.Iron Steel Inst. 174 (1953) 25-28. |
[42] |
Z. Liu, N. Cheng, Q. Zheng, J. Wu, Q. Han, Z. Huang, J. Xing, Y. Li, Y. Gao, Mater. Sci. Eng., A 710 (2018) 392-399.
DOI URL |
[43] |
C.D. Zhao, J.S. Li, Y.X. He, J.X. Wang, W.Y. Wang, H.C. Kou, J. Wang, J. Alloys. Compd. 820 (2020), 153407.
DOI URL |
[44] |
T. Hou, Z. Li, K. Wu, H. Lin, Y. Li, G. Zhang, W. Liu, Acta Mater. 167 (2019) 71-79.
DOI |
[45] |
R. Xin, K. Wu, G. Zhang, T. Hou, G. Ma, W. Qiao, H. Zhao, J. Mater. Sci. Technol. 34 (2018) 786-793.
DOI URL |
[46] |
B. Dong, T. Hou, K. Wu, Z. You, Z. Li, G. Zhang, Mater. Lett. 240 (2019) 66-68.
DOI |
[47] |
H. Sato, T. Murase, T. Fujii, S. Onaka, Y. Watanabe, M. Kato, Acta Mater. 56 (2008) 4549-4558.
DOI URL |
[48] |
Y. Dong, S. Shuai, T. Zheng, J. Cao, C. Chen, J. Wang, Z. Ren, J. Mater. Sci. Technol. 39 (2020) 113-123.
DOI URL |
[49] |
Y. Zhao, B. Zhang, H. Hou, W. Chen, M. Wang, J. Mater. Sci. Technol. 35 (2019) 1044-1052.
DOI URL |
[50] |
Y. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, Y. Li, Acta Mater. 140 (2017) 224-239.
DOI URL |
[51] |
F. Sá, O.L. Rocha, C.A. Siqueira, A. Garcia, Mater. Sci. Eng. A 373 (2004) 131-138.
DOI URL |
[52] |
L. Wang, W. Lu, Q. Hu, M. Xia, Y. Wang, J. Li, Acta Mater. 139 (2017) 75-85.
DOI URL |
[53] |
S. Li, C. Wu, K. Sassa, S. Asai, Mater. Sci. Eng., A 422 (2006) 227-231.
DOI URL |
[54] |
Y. Zhang, X. Miao, Z. Shen, Q. Han, C. Song, Q. Zhai, Acta Mater. 97 (2015) 357-366.
DOI URL |
[55] |
Y. Wang, S. Li, Z. Liu, H. Zhong, L. Xu, H. Xing, J. Mater. Sci. Technol. 35 (2019) 1309-1314.
DOI URL |
[56] |
Z. Gao, W. Jie, Y. Liu, Y. Zheng, H. Luo, J. Alloys. Compd. 797 (2019) 514-522.
DOI URL |
[57] |
M. Schöbel, R. Fernández, R. Koos, J. Bernardi, J. Alloys. Compd. 775 (2019) 617-627.
DOI URL |
[58] | H. He, Y. Yi, S. Huang, Y. Zhang, J. Mater. Sci. Technol. 35 (2019) 55-63. |
[1] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[2] | Ruijie ZHANG, Zhi HE, Zhongwei CHEN, Wanqi JIE. Prediction of Solid-Liquid Interface Stability by Coupling M-S Model with CALPHAD Method [J]. J Mater Sci Technol, 2004, 20(04): 466-468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||