J. Mater. Sci. Technol. ›› 2021, Vol. 65: 72-81.DOI: 10.1016/j.jmst.2020.04.069
• Research Article • Previous Articles Next Articles
Xinzhi Wanga, Yao Wanga, Xinbo Zhanga, Wei Dinga, Longlong Lia, Linjun Huanga, Laurence A. Belfiorea,b,*(), Jianguo Tanga,*(
)
Received:
2020-01-21
Revised:
2020-03-24
Accepted:
2020-04-01
Published:
2021-02-28
Online:
2021-03-15
Contact:
Laurence A. Belfiore,Jianguo Tang
About author:
tang@qdu.edu.cn(J. Tang).Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs)[J]. J. Mater. Sci. Technol., 2021, 65: 72-81.
Fig. 1. (a) UV-vis absorption spectra of PAN, EuCMs@PAN, TbCMs@PAN and ZnCMs@PAN; Inset: Photographs of (1) EuCMs @PAN, (2) TbCMs @PAN, (3) ZnCMs @PAN films under daylight and luminescence images of (4) EuCMs@PAN, (5) TbCMs@PAN, (6) ZnCMs@PAN under 365 nm UV lamp; (b) UV-vis transmittance spectra of PAN, EuCMs@PAN, TbCMs@PAN and ZnCMs@PAN; (c) FT-IR spectra of EuCMs@PAN, TbCMs@PAN, ZnCMs@PAN; (d) the magnified spectra of (c).
Fig. 2. SEM images of EuCMs@PAN (a), TbCMs@PAN (b), ZnCMs@PAN (c) and (d-g) elemental mapping of Eu, O, S and F elements in EuCMs@PAN, (h, i) elemental mapping of Tb, and O elements in TbCMs@PAN, (j-l) elemental mapping of Zn, O and S elements in ZnCMs@PAN.
Fig. 4. (a) XPS survey of EuCMs, TbCMs and ZnCMs; (b) XPS spectra of the N1 s region of Phen and EuCMs; (c) XPS spectra of the O1 s region of PS-b-PAA; (d) XPS spectra of the O1 s region of EuCMs; (e) XPS spectra of the O1 s region of 4-BBA; (f) XPS spectra of the O1 s region of TbCMs; (g) XPS spectra of the N1 s region of BTZ and ZnCMs; (h) XPS spectra of the O1 s region of ZnCMs.
Fig. 5. The emission spectra of EuCMs@PAN (a), TbCMs@PAN (b), ZnCMs@PAN (c) by 365 nm UV excitation and (d) CIE coordinates, the fluorescence decay curves of (e) EuCMs@PAN and TbCMs@PAN, (f) ZnCMs@PAN (λex = 365 nm).
LnCMs@PAN | Mole ratios of luminescent complexes | CIE (x, y) | Colors under UV excitation | ||
---|---|---|---|---|---|
Eu | Tb | Zn | |||
A | 1 | 5 | 0.5 | (0.3171,0.3298) | White |
B | 1 | 0 | 0.5 | (0.4935, 0.2829) | Orange |
C | 1 | 3 | 0 | (0.4859, 0.4606) | Yellow |
D | 1 | 5 | 0 | (0.3608, 0.3575) | Light Yellow |
E | 1 | 1 | 0.5 | (0.4092, 0.2578) | Prink |
F | 1 | 0 | 0.8 | (0.3906, 0.2439) | Rose red |
G | 1 | 0 | 1 | (0.2985, 0.2080) | Purple |
H | 0 | 1 | 0.1 | (0.2086, 0.3127) | Cyan |
I | 1 | 6 | 1 | (0.2793, 0.2366) | Light blue |
Table 1 LnCMs@PAN with different mole ratio of luminescent complexes marked as A to I and luminescence properties.
LnCMs@PAN | Mole ratios of luminescent complexes | CIE (x, y) | Colors under UV excitation | ||
---|---|---|---|---|---|
Eu | Tb | Zn | |||
A | 1 | 5 | 0.5 | (0.3171,0.3298) | White |
B | 1 | 0 | 0.5 | (0.4935, 0.2829) | Orange |
C | 1 | 3 | 0 | (0.4859, 0.4606) | Yellow |
D | 1 | 5 | 0 | (0.3608, 0.3575) | Light Yellow |
E | 1 | 1 | 0.5 | (0.4092, 0.2578) | Prink |
F | 1 | 0 | 0.8 | (0.3906, 0.2439) | Rose red |
G | 1 | 0 | 1 | (0.2985, 0.2080) | Purple |
H | 0 | 1 | 0.1 | (0.2086, 0.3127) | Cyan |
I | 1 | 6 | 1 | (0.2793, 0.2366) | Light blue |
Fig. 6. (a) Emission spectrum, (b)luminescence intensity of peaks at 461 nm, 545 nm and 615 nm, (c) coordinate CIE coordinates and (d) luminescence images of FPFs with different mole ratios of luminescent complexes under 365 nm UV excitation.
Fig. 7. (a) Photographs (inset), photoluminescence spectra and (b) The CIE chromaticity coordinates (a. EuCMs@PAN, b. TbCMs@PAN, c. ZnCMs@PAN) of photoluminescence devices (λex = 365 nm).
[1] |
D. Yang, Y. Wang, L. He, H. Li, ACS Appl. Mater. Interfaces 8 (2016) 19709-19715.
DOI URL PMID |
[2] |
J. Zhang, G.M. Cai, G.X. Zhang, Z.P. Jin, J. Alloys Compd. 762 (2018) 444-455.
DOI URL |
[3] |
D. Yang, D. Liu, C. Tian, S. Wang, H. Li, J. Colloid Interface Sci. 519 (2018) 11-17.
DOI URL PMID |
[4] |
W. Chen, R. Fan, H. Zhang, Y. Dong, P. Wang, Y. Yang, Dalton Trans. 46 (2017) 4265-4277.
DOI URL PMID |
[5] |
A.K. Singh, S.K. Singh, H. Mishra, R. Prakash, S.B. Rai, J. Phys. Chem. B 114 (2010) 13042-13051.
DOI URL PMID |
[6] |
X. Wang, J. Tang, G. Wang, W. Wang, J. Ren, W. Ding, X. Zhang, Y. Wang, W. Shen, L. Huang, Nanomater 9 (2019) 363-377.
DOI URL |
[7] |
Y. Liu, M. Pan, Q.Y. Yang, L. Fu, K. Li, S.C. Wei, C.Y. Su, Chem. Mater. 24 (2012) 1954-1960.
DOI URL |
[8] |
X.G. Yang, X.Q. Lin, Y.B. Zhao, Y.S. Zhao, D.P. Yan, Angew. Chem. Int. Ed. 56 (2017) 7853-7859.
DOI URL |
[9] |
A. Zhang, Y. Yang, G. Zhai, H. Jia, B. Xu, Opt. Mater. 52 (2016) 92-99.
DOI URL |
[10] |
C.S. Stan, P. Horlescu, M. Popa, A. Coroaba, E.L. Ursu, New J. Chem. 40 (2016) 6505-6512.
DOI URL |
[11] |
F. Wang, X. Hu, J. Hu, Q. Peng, B. Zheng, J. Du, D. Xiao, J. Mater. Chem. B 6 (2018) 6008-6015.
DOI URL PMID |
[12] | P. Zhu, H. Zhu, W. Qin, B.H. Dantas, S. Wei, C.K. Tan, N. Tansu, J. Appl. Phys. 119 (2016) 454-458. |
[13] |
Q. Xu, J. Tang, Y. Wang, J. Liu, X. Wang, Z. Huang, L. Huang, Y. Wang, W. Shen, L.A. Belfiore, J. Colloid Interface Sci. 394 (2013) 630-638.
DOI URL PMID |
[14] |
P.G. Derakhshandeh, J. Soleimannejad, J. Janczak, A.M. Kaczmarek, R.V. Deun, CrystEngComm 18 (2016) 6738-6747.
DOI URL |
[15] |
N.E. Wolff, R.J. Pressley, Appl. Phys. Lett. 2 (1963) 152-154.
DOI URL |
[16] |
B. Kupcewicz, A. Kaczmarek-Kedziera, K. Lux, P. Mayer, E. Budzisz, Polyhedron 55 (2013) 259-269.
DOI URL |
[17] |
H. Liu, T. Chu, Z. Rao, S. Wang, Y. Yang, W.T. Wong, Adv. Opt. Mater. 3 (2016) 1545-1550.
DOI URL |
[18] |
L.J. Daumann, P. Werther, M.J. Ziegler, K.N. Raymond, J. Inorg. Biochem. 162 (2016) 263-273.
DOI URL PMID |
[19] |
T. Samanta, S.K. Jana, A.E. Praveen, V. Mahalingam, Dalton Trans. 46 (2017) 9646-9653.
DOI URL PMID |
[20] |
E. Bartolomé, J. Bartolomé, A. Arauzo, J. Luzón, R. Cases, S. Fuertes, V. Sicilia, A. Sánchezcano, J. Aporta, S. Melnic, J. Mater. Chem. C 6 (2018) 5286-5299.
DOI URL |
[21] |
K. Binnemans, Chem. Rev. 109 (2009) 4283-4374.
DOI URL PMID |
[22] |
C. Feng, J.W. Sun, P.F. Yan, Y.X. Li, T.Q. Liu, Q.Y. Sun, G.M. Li, Dalton Trans. 44 (2015) 4640-4647.
DOI URL PMID |
[23] | L. Liu, H. Li, P. Su, Z. Zhang, G. Fu, B. Li, X. Lü, J. Mater, Chem. C. 5 (2017) 4780-4787. |
[24] |
B. Li, X. Huang, H. Guo, Y. Zeng, Dyes Pigm. 150 (2018) 67-72.
DOI URL |
[25] |
L. Liu, X. Zhang, G. Fu, X. Lü, W.K. Wong, R.A. Jones, Dyes Pigm. 141 (2017) 137-147.
DOI URL |
[26] |
V.A. Montes, G. Li, R. Pohl, J. Shinar, P.A. Jr, Adv. Mater. 16 (2004) 2001-2003.
DOI URL |
[27] |
N. Sun, L. Li, Y. Yang, X. Zhao, A. Zhang, H. Jia, X. Liu, B. Xu, J. Mater. Chem. C. 3 (2015) 9933-9941.
DOI URL |
[28] |
W. Qian, A. Zhang, X. Wei, L. Gan, H. Dong, L. Jian, Q. Shen, H. Jia, X. Liu, B. Xu, Opt. Laser Technol. 107 (2018) 389-397.
DOI URL |
[29] |
Z. Di, A.B. Karki, R. Dan, D.P. Young, A. Wang, D. Cocke, T.H. Ho, Z. Guo, Polymer 50 (2009) 4189-4198.
DOI URL |
[30] |
N. Turan, H. Körkoca, R. Adigüzel, N. C¸ olak, K. Buldurun, Molecules 20 (2015) 9309-9325.
DOI URL PMID |
[31] |
A.F. Marijuan, E. Amayuelas, G. Barandika, B. Bazán, M.K. Urtiaga, M.I. Arriortua, Molecules 20 (2015) 6683-6699.
DOI URL PMID |
[32] |
C.W. Bogner, R.S.T. Kamdem, G. Sichtermann, C. Matthaus, D. Holscher, J. Popp, P. Proksch, F.M.W. Grundler, A. Schouten, Microb. Biotechnol. 10 (2017) 175-188.
DOI URL PMID |
[33] | A.I. Sidney, N.V. Varlamova, V.V. Severnyi, I.A. Zubkov, K.A. Andrianov (Eds.), Zhurnal Prikladnoi Spektroskopii, 1970, pp. 477-484 New York. |
[34] |
S.Y. Li, Y. Zhang, W. Yang, H. Liu, X.S. Fang, Adv. Mater. 32 (2020), 1905443.
DOI URL |
[35] |
J. Xua, X.H. Huanga, N.L. Zhoua, J.S. Zhanga, J.C. Baoa, T.H. Lua, C. Li, Mater. Lett. 58 (2004) 1938-1942.
DOI URL |
[36] |
P. Wang, Y.J. Zhang, J. Qin, Y. Chen, Y. Zhao, J. Mol. Struct. 1083 (2015) 95-100.
DOI URL |
[37] |
B. Gao, N. Shi, Z. Qiao, Spectrochimica Acta. Part A. 150 (2015) 565-574.
DOI URL |
[1] | Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Naizheng Wang, Xingxing Jiang, Aleksandr S. Aleksandrovsky, Alexander S. Krylov, Aleksandr S. Oreshonkov, Alexander E. Sedykh, Svetlana S. Volkova, Zheshuai Lin, Oleg V. Andreev, Klaus Müller-Buschbaum. Negative thermal expansion in one-dimension of a new double sulfate AgHo(SO4)2 with isolated SO4 tetrahedra [J]. J. Mater. Sci. Technol., 2021, 76(0): 111-121. |
[2] | Mi Gyeong Kim, Wan-Kuen Jo. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors [J]. J. Mater. Sci. Technol., 2020, 40(0): 168-175. |
[3] | Shijie Xu, Ying Huang, Zhicheng Su, Rongxin Wang, Jianrong Dong, Deliang Zhu. Storage and transfer of optical excitation energy in GaInP epilayer: Photoluminescence signatures [J]. J. Mater. Sci. Technol., 2019, 35(7): 1364-1367. |
[4] | Shang Zhou, Hua Wang, Li Zhong, Junqian Zhao, Liang Li, Guanghai Li. Synthesis and photoluminescence of Ca1-xTiO3:xEu3+ nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(6): 949-954. |
[5] | Xiaoqi Meng, Changjiang Zhao, Boxu Xu, Pei Wang, Juncheng Liu. Effects of the annealing temperature on the structure and up-conversion photoluminescence of ZnO film [J]. J. Mater. Sci. Technol., 2018, 34(12): 2392-2397. |
[6] | Liubing Huang, Jia Grace Lu. Synthesis, Characterizations and Applications of Cadmium Chalcogenide Nanowires: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 556-572. |
[7] | Arockiasamy Ajaypraveenkumar, Johnson Henry, Kannusamy Mohanraj, Ganesan Sivakumar, Sankaran Umamaheswari. Characterisation, Luminescence and Antibacterial Properties of Stable AgNPs Synthesised from AgCl by Precipitation Method [J]. J. Mater. Sci. Technol., 2015, 31(11): 1125-1132. |
[8] | R. Pugaze, A. Sivagamasundari, D. Vanidha, S. Chandrasekar, A. Arunkumar. Room Temperature Ferromagnetism in Dual Doped (Mn2+, Ni2+) ZnO Codoped with Li1+ Prepared Using EDTA Sintered at Low Temperature [J]. J. Mater. Sci. Technol., 2014, 30(3): 275-279. |
[9] | Qiong Chen, Yongqin Chang, Changjing Shao, Jing Zhang, Jun Chen, Mingwen Wang, Yi Long. Effect of Grain Size on Phase Transformation and Photoluminescence Property of the Nanocrystalline ZrO2 Powders Prepared by Sol-Gel Method [J]. J. Mater. Sci. Technol., 2014, 30(11): 1103-1107. |
[10] | S.K. Sharma, S. Dutta, S. Som, P.S. Mandal. CaMoO4:Dy3+,K+near White Light Emitting Phosphor: Structural, Optical and Dielectric Properties [J]. J. Mater. Sci. Technol., 2013, 29(7): 633-638. |
[11] | Z. Deng, X.D. Pi, J.J. Zhao, D. Yang. Photoluminescence from Silicon Nanocrystals in Encapsulating Materials [J]. J. Mater. Sci. Technol., 2013, 29(3): 221-224. |
[12] | Geeta Rani, P.D. Sahare. Structural and Spectroscopic Characterizations of ZnO Quantum Dots Annealed at Different Temperatures [J]. J. Mater. Sci. Technol., 2013, 29(11): 1035-1039. |
[13] | K. Mageshwari, R. Sathyamoorthy. Flower-shaped CuO Nanostructures: Synthesis, Characterization and Antimicrobial Activity [J]. J. Mater. Sci. Technol., 2013, 29(10): 909-914. |
[14] | Y.Q. Chang, P.W. Wang, S.L. Ni, Y. Long, X.D. Li. Influence of Co Content on Raman and Photoluminescence Spectra of Co Doped ZnO Nanowires [J]. J Mater Sci Technol, 2012, 28(4): 313-316. |
[15] | K.M.K. Srivatsa, Deepak Chhikara, M. Senthil Kumar. Effect of Oxygen Admittance Temperature on the Growth of ZnO Microcrystals by Thermal Evaporation Technique [J]. J Mater Sci Technol, 2012, 28(4): 317-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||