J. Mater. Sci. Technol. ›› 2020, Vol. 55: 223-230.DOI: 10.1016/j.jmst.2020.03.026
• Research Article • Previous Articles
Xueying Yanga, Cuili Xianga, Yongjin Zoua,*(), Jing Lianga, Huanzhi Zhanga, Erhu Yana, Fen Xua, Xuebu Hub, Qiong Chengc, Lixian Suna,*(
)
Received:
2020-01-04
Accepted:
2020-03-04
Published:
2020-10-15
Online:
2020-10-27
Contact:
Yongjin Zou,Lixian Sun
Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes[J]. J. Mater. Sci. Technol., 2020, 55: 223-230.
Fig. 2. (a?c) FE-SEM images of sea urchin-shaped Co3O4-NiO at different magnifications. (d?f) FE-SEM images of Co3O4-NiO/GO at different magnifications.
Fig. 3. (a-d) TEM images of Co3O4-NiO/GO; (e, f) HR-TEM images of Co3O4-NiO/GO; EDS elemental maps of C (h), Co (i), Ni (j), and O (k), and (l) SAED pattern.
Fig. 8. (a) GCD curves of Co3O4-NiO/GO electrodes annealed at different temperatures; (b) GCD curves of NiO/GO, Co3O4/GO, and Co3O4-NiO/GO electrodes at 1 A g-1; (c) CV and (d) and GCD curves of Co3O4-NiO/GO; (e) Nyquist plots of the electrodes; (f) specific capacitance of Co3O4-NiO/GO calculated based on the GCD curves.
Fig. 9. (a) CV curves of Co3O4-NiO/GO//AC at different potentials; (b) CV curves and (c) GCD curves of Co3O4-NiO/GO//AC at different current densities; and (d) cyclic stability test performed at 10 A g-1.
[1] |
X. Nie, X. Kong, D. Selvakumaran, L. Lou, J. Shi, T. Zhu, S. Liang, G. Cao, A. Pan, ACS Appl. Mater. Interfaces 10 (2018) 36018-36027.
DOI URL PMID |
[2] |
X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 6 (2012) 3206-3213.
DOI URL PMID |
[3] | Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, ACS Appl. Mater.Interfaces 6 (2014) 1773-1780. |
[4] | F. Wang, J. Zheng, G. Li, J. Ma, C. Yang, Q. Wang, Mater. Chem. Phys. 215 (2018) 121-126. |
[5] |
J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14 (2014) 831-838.
DOI URL PMID |
[6] |
M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, ACS Appl. Mater. Interfaces 4 (2012) 4631-4636.
DOI URL PMID |
[7] | J. Fu, L. Li, J.M. Yun, D. Lee, B.K. Ryu, K.H. Kim, Chem. Eng. J. 375 (2019), 121939. |
[8] | Z. Gao, N. Song, X. Li, J. Mater, Chem. A 3 (2015) 14833-14844. |
[9] |
W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, ACS Appl. Mater. Interfaces 6 (2014) 19318-19326.
DOI URL PMID |
[10] | N. Ouldhamadouche, A. Achour, R. Lucio-Porto, M. Islam, S. Solaymani, A. Arman, A. Ahmadpourian, H. Achour, L. Le Brizoual, M.A. Djouadi, T. Brousse, J. Mater, Sci. Technol. 34 (2018) 976-982. |
[11] | A. Dang, T. Li, C. Xiong, T. Zhao, Y. Shang, H. Liu, X. Chen, H. Li, Q. Zhuang, S. Zhang, Compos. Part B 141 (2018) 250-257. |
[12] |
C. Young, R.R. Salunkhe, J. Tang, C.C. Hu, M. Shahabuddin, E. Yanmaz, M.S.A. Hossain, J.H. Kim, Y. Yamauchi, Phys. Chem. Chem. Phys. 18 (2016) 29308-29315.
DOI URL PMID |
[13] |
F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X.X. Liu, Y. Li, Nanoscale 5 (2013) 7984-7990.
DOI URL PMID |
[14] | X. Mao, Y. Zou, J. Liang, C. Xiang, H. Chu, E. Yan, H. Zhang, F. Xu, X. Hu, L. Sun, Ceram. Int. 46 (2020) 1448-1456. |
[15] |
R.R. Salunkhe, B.P. Bastakoti, C.T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.C. Hu, Y. Yamauchi, Chem. Eur. J. 20 (2014) 3084-3088.
DOI URL PMID |
[16] | X. Zhang, R. Zhang, C. Xiang, Y. Liu, Y. Zou, H. Chu, S. Qiu, F. Xu, L. Sun, Ceram. Int. 45 (2019) 13894-13902. |
[17] |
L. Wang, G. Duan, J. Zhu, S.M. Chen, X.H. Liu, S. Palanisamy, J. Colloid Interface Sci. 483 (2016) 73-83.
DOI URL PMID |
[18] |
Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, D. Shen, ACS Appl. Mater. Interfaces 8 (2016) 9050-9058.
URL PMID |
[19] | G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, NanoLett. 11 (2011) 4438-4442. |
[20] | S. Makino, Y. Yamauchi, W. Sugimoto, J. Power Sources 227 (2013) 153-160. |
[21] | H. Che, Y. Lv, A. Liu, J. Mu, X. Zhang, Y. Bai, Ceram. Int. 43 (2017) 6054-6062. |
[22] | Y. Liu, C. Xiang, H. Chu, S. Qiu, J. McLeod, Z. She, F. Xu, L. Sun, Y. Zou, J. Mater, Sci. Technol. 37 (2020) 135-142. |
[23] | G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, J. Mater. Sci. Technol. 34 (2018) 1538-1543. |
[24] | B. Zhao, J. Song, P. Liu, W. Xu, T. Fang, Z. Jiao, H. Zhang, Y. Jiang, J. Mater. Chem. 21 (2011) 18792-18798. |
[25] | P. Wang, H. Zhou, C. Meng, Z. Wang, K. Akhtar, A. Yuan, Chem. Eng. J. 369 (2019) 57-63. |
[26] | H. Chen, J. Zhou, Q. Li, K. Tao, X. Yu, S. Zhao, Y. Hu, W. Zhao, L. Han, Inorg. Chem. Front. 6 (2019) 2481-2487. |
[27] | P. Jiang, Q. Wang, J. Dai, W. Li, Z. Wei, Mater. Lett. 188 (2017) 69-72. |
[28] | Y. Zuo, J.J. Ni, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, Appl. Surf. Sci. 370 (2016) 528-535. |
[29] | M. Fan, B. Ren, L. Yu, D. Song, Q. Liu, J. Liu, J. Wang, X. Jing, L. Liu, Electrochim. Acta 166 (2015) 168-173. |
[30] | Q. Hu, Z. Gu, X. Zheng, X. Zhang, Chem. Eng. J. 304 (2016) 223-231. |
[31] | P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R.I. Boughton, C.P. Wong, H. Liu, B. Yang, Nano Energy 15 (2015) 9-23. |
[32] |
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5 (2013) 263-275.
DOI URL PMID |
[33] | X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Nat. Chem. 17 (2011) 10898-10905. |
[34] |
W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, L. Zhang, RSC Adv. 3 (2013) 2483-2490.
DOI URL |
[35] |
H. Wang, C.M.B. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, B.C. Olsen, T. Stephenson, D. Mitlin, Nano Res. 5 (2012) 605-617.
DOI URL |
[36] |
G. Ghanashyam, H.K. Jeong, Chem. Phys. Lett. 706 (2018) 421-425.
DOI URL |
[37] | Y. Zou, C. Cai, C. Xiang, P. Huang, H. Chu, Z. She, F. Xu, L. Sun, H.B. Kraatz, Electrochim. Acta 261 (2018) 537-547. |
[38] | X. Bai, Q. Liu, J. Liu, H. Zhang, Z. Li, X. Jing, P. Liu, J. Wang, R. Li, Chem. Eng. J. 315 (2017) 35-45. |
[39] |
Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, ACS Appl. Mater. Interfaces 6 (2014) 7626-7632.
DOI URL PMID |
[40] | S. Wu, K.S. Hui, K.N. Hui, K.H. Kim, J. Mater. Chem. A 4 (2016) 9113-9123. |
[41] | J. Wu, J. Zhou, Q. Lin, L. Luo, Q. Lu, Ceram. Int. 45 (2019) 15394-15399. |
[42] | G. Sun, L. Ma, J. Ran, X. Shen, H. Tong, J. Mater. Chem. A 4 (2016) 9542-9554. |
[43] | B. Zhao, H. Zhuang, T. Fang, Z. Jiao, R. Liu, X. Ling, B. Lu, Y. Jiang, J. Alloys Compd. 597 (2014) 291-298. |
[44] | C. Xiang, Q. Wang, Y. Zou, P. Huang, H. Chu, S. Qiu, F. Xu, L. Sun, J. Mater. Chem.A 5 (2017) 9907-9916. |
[45] | Y. Wang, X. Wu, W. Zhang, J. Li, C. Luo, Q. Wang, Synth. Met. 229 (2017) 82-88. |
[46] | J. Tan, H. Chen, Y. Gao, H. Li, Electrochim. Acta 178 (2015) 144-152. |
[47] | W. Liu, C. Lu, X. Wang, K. Liang, B.K. Tay, J. Mater. Chem. A 3 (2015) 624-633. |
[48] | Q.C. Zhang, L.L. Tian, Y.C. Wu, Y. Li, L.X. Wen, S. Wang, J. Alloys Compd. 792 (2019) 314-327. |
[49] | X.W. Wang, D.L. Zheng, P.Z. Yang, X.E. Wang, Q.Q. Zhu, P.F. Ma, L.Y. Sun, Chem. Phys. Lett. 667 (2017) 260-266. |
[50] |
S. Liu, K.S. Hui, K.N. Hui, ACS Appl. Mater. Interfaces 8 (2016) 3258-3267.
DOI URL PMID |
[51] | M. Gopalakrishnan, G. Srikesh, A. Mohan, V. Arivazhagan, Appl. Surf. Sci. 403 (2017) 578-583. |
[52] | Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, Y. Chu, Electrochim. Acta 91 (2013) 173-178. |
[53] | L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, Adv. Energy Mater. 5 (2015), 1400977. |
[54] | D. Kong, L. Cao, Z. Fang, F. Lai, Z. Lin, P. Zhang, W. Li, Ionics 25 (2019) 4341-4350. |
[55] | Y. Yin, C. Xiang, H. Chu, H. Zhang, F. Xu, E. Yan, L. Sun, C. Tang, Y. Zou, Appl. Surf. Sci. 460 (2018) 25-32. |
[56] | S.W. Zhang, B.S. Yin, C. Liu, Z.B. Wang, D.M. Gu, Appl. Surf. Sci. 458 (2018) 478-488. |
[57] |
X. Ren, C. Guo, L. Xu, T. Li, L. Hou, Y. Wei, ACS Appl. Mater. Interfaces 7 (2015) 19930-19940.
DOI URL PMID |
[1] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[2] | Hao Liu, Baomin Fan, Guifeng Fan, Yucong Ma, Hua Hao, Wen Zhang. Anti-corrosive mechanism of poly (N-ethylaniline)/sodium silicate electrochemical composites for copper: Correlated experimental and in-silico studies [J]. J. Mater. Sci. Technol., 2021, 72(0): 202-216. |
[3] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[4] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
[5] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[6] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[7] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[8] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[9] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[10] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[11] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[12] | Yijie Hu, Hao Zhuo, Zehong Chen, Xinwen Peng, Linxin Zhong, Runcang Sun. Metal coordination assists fabrication of multifunctional aerogel [J]. J. Mater. Sci. Technol., 2021, 71(0): 67-74. |
[13] | Kaustubh Bawane, Kathy Lu, Xian-Ming Bai, Jing Hu, Meimei Li, Peter M. Baldo, Edward Ryan. Microstructural evolution of a silicon carbide-carbon coated nanostructured ferritic alloy composite during in-situ Kr ion irradiation at 300°C 450°C [J]. J. Mater. Sci. Technol., 2021, 71(0): 75-83. |
[14] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[15] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||