J. Mater. Sci. Technol. ›› 2021, Vol. 71: 67-74.DOI: 10.1016/j.jmst.2020.09.007
• Research Article • Previous Articles Next Articles
Yijie Hua, Hao Zhuoa, Zehong Chena, Xinwen Penga, Linxin Zhonga,*(), Runcang Sunb
Received:
2020-04-18
Revised:
2020-06-13
Accepted:
2020-07-01
Published:
2021-04-30
Online:
2021-04-30
Contact:
Linxin Zhong
About author:
* E-mail address: lxzhong0611@scut.edu.cn (L. Zhong).Yijie Hu, Hao Zhuo, Zehong Chen, Xinwen Peng, Linxin Zhong, Runcang Sun. Metal coordination assists fabrication of multifunctional aerogel[J]. J. Mater. Sci. Technol., 2021, 71: 67-74.
Fig. 1. Illustration of interfacial design and fabrication of CS/MT/Fe-C aerogel. (a) Fabrication process of elastic CS/MT/Fe-C aerogel. (b) Transmission electron microscopy (TEM) image of MMT nanosheets. (c) Atomic force microscopy (AFM) image and the thickness of MMT nanosheets. (d) Tyndall effect of MMT dispersion. (e) Tyndall effect of CS/MT/Fe mixed suspension. (f) Digital photo of CS/MT/Fe composite. (g) Digital photo of CS/MT/Fe-C aerogel. (h, i) Interactions among MMT nanosheets, chitosan chains, and Fe3+ ions in CS/MT/Fe composite.
Fig. 2. Structural characterization and mechanical performances of CS/MT composite and CS/MT/Fe composite. (a) FT-IR spectra. (b) N 1s XPS spectra of CS/MT composite. (c) N 1s XPS spectra of CS/MT/Fe composite. (d) Fe 2p XPS spectra of CS/MT/Fe composite. (e) Illustration of metal-ligand coordination between chitosan chain and Fe3+. (f) Microstructure of CS/MT composite. (g) Compressibility of CS/MT composite. (h) Microstructure of CS/MT/Fe composite. (i) Compressibility of CS/MT/Fe composite.
Fig. 3. Mechanical performances, morphologies, and finite element models of CS/MT-C and CS/MT/Fe-C. (a, b) Digital photos of CS/MT-C and CS/MT/Fe-C before and after compression, respectively. (c) Stress-strain curves of CS/MT-C at 70 % strain. (d) Stress-strain curves of CS/MT/Fe-C at 70 % strain. (e, f) SEM of CS/MT-C and CS/MT/Fe-C before compression at 70 % strain, respectively. (g, h) SEM of CS/MT-C and CS/MT/Fe-C after compression at 70 % strain for 1 cycle, respectively. (i) Finite element model of CS/MT-C upon compression. (j) Finite element model of CS/MT/Fe-C upon compression.
Fig. 4. Mechanical performances of CS/MT/Fe-C with optimal ratio of chitosan to MMT (5:1). (a) Stress-strain curves at 70 % strain. The inset shows the corresponding digital photos. (b) Stress-strain curves at different compression strains. (c) Stress-strain curves at high compression strain of 99 %. The inset shows the corresponding digital photos upon compression. (d) Fatigue resistance upon 50,000 cycles at 50 % strain. (e) Height and stress retentions and energy dissipation coefficient through fatigue resistance test. (f) Comparison of height retention after 1000 cycles at 50 % strain with various compressible monoliths.
Fig. 5. Applications of CS/MT/Fe-C in pressure sensing and thermal insulation. (a) Linear sensitivity at 0-2.5 kPa. (b) Real-time current change as a function of water drop. (c) The stable strain-current response for 1000 cycles at 50 % strain. (d) Human pulse detection. (e, f) Optical and infrared images of the aerogel on a heating steel plate (200 °C) for 5 min, and corresponding temperature distribution. (g, h) Thermal insulation. (i) Stable elasticity in flame.
Material | Sensitivity (kPa-1) | Sensing range (kPa) | References |
---|---|---|---|
Graphene aerogel | 8.6 | 0.8-1.5 | [ |
14.3 | 1.5-2.3 | ||
Graphene oxide (GO) foam | 15.2 | < 0.3 | [ |
CNT/PDMS Sponge | 0.033 | < 20 | [ |
CNT/graphene/PDMS monolith | 19.8 | < 0.3 | [ |
0.27 | 1-6 | ||
MXene/rGO aerogel | 4.05 | < 1.25 | [ |
22.56 | 1.25-3.5 | ||
MXene-derived aerogel | 80.4 | < 5 | [ |
MXene-derived aerogel | 12.5 | < 10 | [ |
Carbonaceous nanofibrous aerogels | 0.43 | 1-3.5 | [ |
1.02 | 3.5-4.5 | ||
Carbon foam | 100 | < 2 | [ |
21.22 | 2-9 | ||
Carbon aerogel | 27.2 | < 18 | [ |
Carbon/polyimide (PI) composite | 10.74 | < 100 | [ |
Polypyrrole/silver nanowire aero-sponges | 0.33 | < 3 | [ |
Organic monolith | 4.6 | 0.1-5 | [ |
27.9 | 5-20 | ||
Graphene/PDMS films | 1.2 | < 25 | [ |
CNT/PDMS arrays | 13.9 | 0.1-20 | [ |
ZnO/Polystyrene (PS) film | 10.3 | < 2 | [ |
Pressure‐sensing Skins | 0.29 | < 5 | [ |
Carbon/MMT aerogel | 53.04 | < 2.5 | This work |
Table 1 Sensitivities of various sensing materials.
Material | Sensitivity (kPa-1) | Sensing range (kPa) | References |
---|---|---|---|
Graphene aerogel | 8.6 | 0.8-1.5 | [ |
14.3 | 1.5-2.3 | ||
Graphene oxide (GO) foam | 15.2 | < 0.3 | [ |
CNT/PDMS Sponge | 0.033 | < 20 | [ |
CNT/graphene/PDMS monolith | 19.8 | < 0.3 | [ |
0.27 | 1-6 | ||
MXene/rGO aerogel | 4.05 | < 1.25 | [ |
22.56 | 1.25-3.5 | ||
MXene-derived aerogel | 80.4 | < 5 | [ |
MXene-derived aerogel | 12.5 | < 10 | [ |
Carbonaceous nanofibrous aerogels | 0.43 | 1-3.5 | [ |
1.02 | 3.5-4.5 | ||
Carbon foam | 100 | < 2 | [ |
21.22 | 2-9 | ||
Carbon aerogel | 27.2 | < 18 | [ |
Carbon/polyimide (PI) composite | 10.74 | < 100 | [ |
Polypyrrole/silver nanowire aero-sponges | 0.33 | < 3 | [ |
Organic monolith | 4.6 | 0.1-5 | [ |
27.9 | 5-20 | ||
Graphene/PDMS films | 1.2 | < 25 | [ |
CNT/PDMS arrays | 13.9 | 0.1-20 | [ |
ZnO/Polystyrene (PS) film | 10.3 | < 2 | [ |
Pressure‐sensing Skins | 0.29 | < 5 | [ |
Carbon/MMT aerogel | 53.04 | < 2.5 | This work |
[1] |
Z.H. Zhao, X.D. Hu, H. Wang, M.Y. Ye, Z.Y. Sang, H.M. Ji, X.L. Li, Y. Dai, Nano Energy 48 (2018) 526-535.
DOI URL |
[2] |
X. Liang, K. Nie, X. Ding, L. Dang, J. Sun, F. Shi, H. Xu, R. Jiang, X. He, Z. Liu, ACS Appl. Mater. Interfaces 10 (2018) 10087-10095.
DOI URL |
[3] |
J. Huang, X. Liu, Z. Yang, X. Wu, J. Wang, S. Yang, Nanoscale 11 (2019) 1159-1168.
DOI URL |
[4] |
Y. Hu, H. Zhuo, Z. Chen, K. Wu, Q. Luo, Q. Liu, S. Jing, C. Liu, L. Zhong, R. Sun, ACS Appl. Mater. Interfaces 10 (2018) 40641-40650.
DOI URL |
[5] |
Y. Hu, Z. Chen, H. Zhuo, L. Zhong, X. Peng, R.C. Sun, Adv. Funct. Mater. 29 (2019), 1904472.
DOI URL |
[6] |
Z. Niu, W. Zhou, X. Chen, J. Chen, S. Xie, Adv. Mater. 27 (2015) 6002-6008.
DOI URL |
[7] | Y. Song, H. Chen, Z. Su, X. Chen, L. Miao, J. Zhang, X. Cheng, H. Zhang, Small 13 (2017), 1702091. |
[8] |
Z. Ma, A. Wei, J. Ma, L. Shao, H. Jiang, D. Dong, Z. Ji, Q. Wang, S. Kang, Nanoscale 10 (2018) 7116-7126.
DOI URL |
[9] |
R. Bera, A. Maitra, S. Paria, S.K. Karan, A.K. Das, A. Bera, S.K. Si, L. Halder, A. De, B.B. Khatua, Chem. Eng. J. 335 (2018) 501-509.
DOI URL |
[10] |
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma, C. Luo, S. Wang, J. Rao, X. Hu, J. Su, Nano Energy 50 (2018) 79-87.
DOI URL |
[11] |
J. Wang, G. Cai, S. Li, D. Gao, J. Xiong, P.S. Lee, Adv. Mater. 30 (2018), 1706157.
DOI URL |
[12] | R. Guo, X. Sun, S. Yao, M. Duan, H. Wang, J. Liu, Z. Deng, Int. J. Adv. Mater. Technol. 4 (2019), 1900183. |
[13] | Y. Sargolzaeiaval, V.P. Ramesh, T.V. Neumann, V. Misra, D. Vashaee, M.D. Dickey, M.C. Öztürk, Appl. Energy 262 (2020), 114370. |
[14] |
X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 22 (2010) 617-621.
DOI |
[15] |
H. Wang, W. Lu, J. Di, D. Li, X. Zhang, M. Li, Z. Zhang, L. Zheng, Q. Li, Adv. Funct. Mater. 27 (2017), 1606220.
DOI URL |
[16] |
H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Adv. Mater. 25 (2013) 2219-2223.
DOI URL |
[17] |
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, R.S. Ruoff, ACS Nano 12 (2018) 5816-5825.
DOI URL |
[18] |
M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao, C. Gao, H. Bai, T. Xie, ACS Nano 11 (2017) 6817-6824.
DOI URL |
[19] |
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, ACS Nano 12 (2018) 3209-3216.
DOI URL |
[20] |
H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu, L. Zhong, J. Mater. Chem. A. 7 (2019) 8092-8100.
DOI |
[21] |
F. Zhang, Y. Feng, M. Qin, L. Gao, Z. Li, F. Zhao, Z. Zhang, F. Lv, W. Feng, Adv. Funct. Mater. 29 (2019), 1901383.
DOI URL |
[22] |
H. Sun, Z. Xu, C. Gao, Adv. Mater. 25 (2013) 2554-2560.
DOI URL |
[23] |
J. Xiao, Y. Tan, Y. Song, Q. Zheng, J. Mater. Chem. A. 6 (2018) 9074-9080.
DOI URL |
[24] |
L. Qiu, B. Huang, Z. He, Y. Wang, Z. Tian, J.Z. Liu, K. Wang, J. Song, T.R. Gengenbach, D. Li, Adv. Mater. 29 (2017), 1701553.
DOI URL |
[25] |
S.M. Chen, H.L. Gao, X.H. Sun, Z.Y. Ma, T. Ma, J. Xia, Y.B. Zhu, R. Zhao, H.B. Yao, H.A. Wu, Matter 1 (2019) 412-427.
DOI URL |
[26] |
Y. Cheng, J. Peng, H. Xu, Q. Cheng, Adv. Funct. Mater. 28 (2018), 1800924.
DOI URL |
[27] |
S. Wan, Y. Chen, Y. Wang, G. Li, G. Wang, L. Liu, J. Zhang, Y. Liu, Z. Xu, A.P. Tomsia, Matter 1 (2019) 389-401.
DOI URL |
[28] |
Y. Zhang, S. Gong, Q. Zhang, P. Ming, S. Wan, J. Peng, L. Jiang, Q. Cheng, Chem. Soc. Rev. 45 (2016) 2378-2395.
DOI URL |
[29] |
E.R. Kenawy, A.A. Ghfar, S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, A.A. Alqadami, M. Hamid, J. Environ. Manage. 219 (2018) 285-293.
DOI URL |
[30] |
P. Paul, A.K. Kaushik, E.M. Arruda, A.M. Waas, S.B. Sup, X. Jiadi, N. Himabindu, B.G. Pumplin, L. Joerg, R. Ayyalusamy, Science 318 (2007) 80-83.
DOI URL |
[31] |
R.B. Hernández, A.P. Franco, O.R. Yola, A. López-Delgado, J. Felcman, M.A.L. Recio, A.L.R. Mercê, J. Mol. Struct. 877 (2008) 89-99.
DOI URL |
[32] |
S. Wan, J. Peng, Y. Li, H. Hu, L. Jiang, Q. Cheng, ACS Nano 9 (2015) 9830-9836.
DOI URL |
[33] |
B. Zhang, N. Chen, C. Feng, Z. Zhang, Chem. Eng. J. 353 (2018) 361-372.
DOI URL |
[34] |
F.L. Meng, Z.L. Wang, H.X. Zhong, J. Wang, J.M. Yan, X.B. Zhang, Adv. Mater. 28 (2016) 7948-7955.
DOI URL |
[35] |
Z. Zhou, F. He, Y. Shen, X. Chen, Y. Yang, S. Liu, T. Mori, Y. Zhang, Chem. Commun.( Camb.) 53 (2017) 2044-2047.
DOI URL |
[36] |
H.L. Gao, Y.B. Zhu, L.B. Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Nat. Commun. 7 (2016) 12920.
DOI URL |
[37] |
X. Zhao, W. Yao, W. Gao, H. Chen, C. Gao, Adv. Mater. 29 (2017), 1701482.
DOI URL |
[38] |
Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Adv. Mater. 28 (2016) 9512-9518.
DOI |
[39] |
J. Zhang, B. Li, L. Li, A. Wang, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 2069-2074.
DOI URL |
[40] |
Y. Hu, H. Zhuo, Q. Luo, Y. Wu, R. Wen, Z. Chen, L. Liu, L. Zhong, X. Peng, R. Sun, J. Mater. Chem. A. 7 (2019) 10273-10281.
DOI URL |
[41] | L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi, S.W. Guo, ACS Nano 12 (2018), 3103-3011. |
[42] |
C. Hou, H. Wang, Q. Zhang, Y. Li, M. Zhu, Adv. Mater. 26 (2014) 5018-5024.
DOI URL |
[43] |
M. Jian, K. Xia, W. Qi, Y. Zhe, Y. Zhang, Adv. Funct. Mater. 27 (2017), 1606066.
DOI URL |
[44] |
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing, L. Zhong, X. Peng, R.C. Sun, Chem. Mater. 31 (2019) 3301-3312.
DOI URL |
[45] |
W. Liu, N. Liu, Y. Yue, J. Rao, C. Luo, H. Zhang, C. Yang, J. Su, Z. Liu, Y. Gao, J. Mater. Chem. C 6 (2018) 1451-1458.
DOI URL |
[46] | Y. Huang, Y. Chen, X. Fan, N. Luo, S. Zhou, S.C. Chen, N. Zhao, C.P. Wong, Small 14 (2018), e1801520. |
[47] |
W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, ACS Nano 9 (2015) 4244-4251.
DOI URL |
[48] |
F. Zhang, Y. Zang, D. Huang, C.A. Di, D. Zhu, Nat. Commun. 6 (2015) 8356.
DOI URL |
[49] | J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, Y. Fang, Small 14 (2018), e1800819. |
[50] |
H. Bing, Q. Zhang, L. Li, J. Sun, M. Ping, Z. Zhou, Q. Li, J. Guo, L. Xie, C. Li, J. Mater. Chem. A. 6 (2018) 14594-14601.
DOI URL |
[51] |
I. You, S.E. Choi, H. Hwang, S.W. Han, J.W. Kim, U. Jeong, Adv. Funct. Mater. 28 (2018), 1870214.
DOI URL |
[52] |
Y.C. Lai, J. Deng, R. Liu, Y.C. Hsiao, S.L. Zhang, W. Peng, H.M. Wu, X. Wang, Z.L. Wang, Adv. Mater. 30 (2018), 1801114.
DOI URL |
[53] |
Y. Si, J. Yu, X. Tang, J. Ge, D. Bin, Nat. Commun. 5 (2014) 5802.
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[3] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[4] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[5] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[6] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
[7] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[8] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[9] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[10] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[11] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[12] | Yanrong Lv, Chao Han, Ye Zhu, Tianao Zhang, Shuo Yao, Zhangxing He, Lei Dai, Ling Wang. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives [J]. J. Mater. Sci. Technol., 2021, 75(0): 96-109. |
[13] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[14] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[15] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||