J. Mater. Sci. Technol. ›› 2020, Vol. 59: 189-194.DOI: 10.1016/j.jmst.2020.04.052
• Research Article • Previous Articles Next Articles
Jing Wanga, Muchun Guoa, Jianbo Zhua, Dandan Qina, Fengkai Guoa,*(), Qian Zhangb, Wei Caia, Jiehe Suia,*(
)
Received:
2020-03-23
Revised:
2020-04-06
Accepted:
2020-04-29
Published:
2020-12-15
Online:
2020-12-18
Contact:
Fengkai Guo,Jiehe Sui
Jing Wang, Muchun Guo, Jianbo Zhu, Dandan Qin, Fengkai Guo, Qian Zhang, Wei Cai, Jiehe Sui. Enhanced thermoelectric properties of Zintl phase YbMg2Bi1.98 through Bi site substitution with Sb[J]. J. Mater. Sci. Technol., 2020, 59: 189-194.
Chemical Composition | Theoretical density (g cm-3) | Measured density (g cm-3) | Relative density |
---|---|---|---|
YbMg2Bi1.98 | 7.08 | 6.75 | 95 % |
YbMg2Bi1.88Sb0.1 | 7.03 | 6.76 | 96% |
YbMg2Bi1.78Sb0.2 | 6.95 | 6.58 | 95 % |
YbMg2Bi1.58Sb0.4 | 6.79 | 6.57 | 97% |
Table 1 Density (ρ) of samples prepared in this study. The density was measured using the Archimedes method.
Chemical Composition | Theoretical density (g cm-3) | Measured density (g cm-3) | Relative density |
---|---|---|---|
YbMg2Bi1.98 | 7.08 | 6.75 | 95 % |
YbMg2Bi1.88Sb0.1 | 7.03 | 6.76 | 96% |
YbMg2Bi1.78Sb0.2 | 6.95 | 6.58 | 95 % |
YbMg2Bi1.58Sb0.4 | 6.79 | 6.57 | 97% |
Fig. 1. (a) XRD patterns, (b) zoomed-in XRD patterns, (c) dependence of lattice parameters a and c on composition of YbMg2Bi1.98-xSbx (x = 0, 0.1, 0.2, 0.4).
Fig. 2. Electrical transport properties of YbMg2Bi1.98-xSbx. Temperature dependence of (a) electrical conductivity and (b) Seebeck coefficient, (c) Sb content dependence of energy band gap; (d) carrier concentration dependence of Seebeck coefficient and the calculated Pisarenko plot with m* = 0.66me at room temperature; (e) Sb content dependence of carrier concentration and mobility; (f) temperature dependence of power factor.
Fig. 3. Temperature dependent thermal transport properties of YbMg2Bi1.98-xSbx. (a) Total thermal conductivity; (b) experimental and calculated lattice thermal conductivity which are represented by solid symbols and dash lines.
Composition | A (10-18 s K-1) | B (10-41 s3) |
---|---|---|
YbMg2Bi1.98 | 13.05 | 0.001 |
YbMg2Bi1.88Sb0.1 | 12.79 | 0.64 |
YbMg2Bi1.78Sb0.2 | 12.96 | 0.80 |
YbMg2Bi1.58Sb0.4 | 12.89 | 1.44 |
Table 2 Values of lattice thermal conductivity fitting parameters of YbMg2Bi1.98-xSbx.
Composition | A (10-18 s K-1) | B (10-41 s3) |
---|---|---|
YbMg2Bi1.98 | 13.05 | 0.001 |
YbMg2Bi1.88Sb0.1 | 12.79 | 0.64 |
YbMg2Bi1.78Sb0.2 | 12.96 | 0.80 |
YbMg2Bi1.58Sb0.4 | 12.89 | 1.44 |
Fig. 5. Hot side temperature dependent calculated (a) engineering figure of merit (ZT)eng, (b) conversion efficiency (η), (c) engineering power factor (PF)eng, (d) output power density (ω) at the cold side temperature of 300 K for YbMg2Bi1.98-xSbx.
[1] |
Z. Huang, L. Yin, C. Hu, J. Shen, T. Zhu, Q. Zhang, K. Xia, J. Xin, X. Zhao, J. Mater. Sci. Technol. 40 (2020) 113-118.
DOI URL |
[2] |
M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5 (2012) 5147-5162.
DOI URL |
[3] |
X. Zhang, L. Zhao, J. Materiomics 1 (2015) 92-105.
DOI URL |
[4] |
Z. Liu, Y. Wang, J. Mao, H. Geng, J. Shuai, Y. Wang, R. He, W. Cai, J. Sui, Z. Ren, Adv. Energy Mater. 6 (2016), 1502269.
DOI URL |
[5] |
S.K. Bux, A. Zevalkink, O. Janka, D. Uhl, S. Kauzlarich, J.G. Snyder, J.P. Fleurial, J. Mater. Chem. A 2 (2013) 215-220.
DOI URL |
[6] | J. Shuai, H. Geng, Y. Lan, Z. Zhu, C. Wang, Z. Liu, J. Bao, C. Chu, J. Sui, Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 4125-4132. |
[7] |
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, Science 321 (2008) 554-557.
DOI URL PMID |
[8] |
Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 13261-13266.
DOI URL PMID |
[9] |
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473 (2011) 66-69.
DOI URL PMID |
[10] |
J.P. Heremans, C.M. Thrush, D.T. Morelli, Phys. Rev. B 70 (2004), 115334.
DOI URL |
[11] |
X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, J. Sui, Adv. Energy Mater. 7 (2017), 1602582.
DOI URL |
[12] |
J. Mao, Y. Wang, H.S. Kim, Z. Liu, U. Saparamadu, F. Tian, K. Dahal, J. Sun, S. Chen, W. Liu, Z. Ren, Nano Energy 17 (2015) 279-289.
DOI URL |
[13] |
Y. Nishio, T. Hirano, Jpn. J. Appl. Phys. 36 (1997) 170-174.
DOI URL |
[14] |
C. Fu, T. Zhu, Y. Pei, H. Xie, H. Wang, G.J. Snyder, Y. Liu, Y. Liu, X. Zhao, Adv. Energy Mater. 4 (2014), 1400600.
DOI URL |
[15] |
L. Zhao, J. He, C. Wu, T.P. Hogan, X. Zhou, C. Uher, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 134 (2012) 7902-7912.
DOI URL |
[16] | H. Hao, L. Zhao, X. Hu, J. Mater. Sci. Technol. 25 (2009) 105-108. |
[17] |
B. Zhan, J. Lan, Y. Liu, Y. Lin, Y. Shen, C. Nan, J. Mater. Sci. Technol. 30 (2014) 821-825.
DOI URL |
[18] |
H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, X. Zhao, T. Zhu, Adv. Funct. Mater. 23 (2013) 5123-5130.
DOI URL |
[19] |
F. Gascoin, S. Ottensmann, D. Stark, S.M. Haïle, G.J. Snyder, Adv. Funct. Mater. 15 (2005) 1860-1864.
DOI URL |
[20] |
J. Hu, X. Fan, C. Jiang, B. Feng, Q. Xiang, G. Li, Z. He, Y. Li, J. Mater. Sci. Technol. 34 (2018) 2458-2463.
DOI URL |
[21] | C. Yu, Y. Zhang, T. Zhu, G. Jiang, X. Zhao, J. Mater. Sci. Technol. 25 (2009) 738-741. |
[22] |
Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G.J. Snyder, Y. Pei, Adv. Mater. 29 (2017), 1606768.
DOI URL |
[23] |
Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G.J. Snyder, Y. Pei, Nat. Commun. 8 (2017) 13828.
DOI URL PMID |
[24] |
L. Zhao, J. He, S. Hao, C. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 134 (2012) 16327-16336.
URL PMID |
[25] |
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Phys. Rev. Lett. 96 (2006) 45901.
DOI URL |
[26] |
B. Cheng, Y. Lin, J. Lan, Y. Liu, C. Nan, J. Mater. Sci. Technol. 27 (2011) 1165-1168.
DOI URL |
[27] |
W. Xie, X. Tang, Y. Yan, Q. Zhang, T.M. Tritt, Appl. Phys. Lett. 94 (2009), 102111.
DOI URL |
[28] | C. Chang, L. Zhao, Mater. Today Phys. 4 (2018) 50-57. |
[29] | A.F. Ioffe, L.S. Stil’Bans, E.K. Iordanishvili, T.S. Stavitskaya, A. Gelbtuch, G. Vineyard, Phys. Today 12 (1959) 42. |
[30] |
J. Shuai, Y. Wang, Z. Liu, H.S. Kim, J. Mao, J. Sui, Z. Ren, Nano Energy 25 (2016) 136-144.
DOI URL |
[31] |
S.M. Kauzlarich, S.R. Brown, G.J. Snyder, Dalton Trans. (2007) 2099-2107.
DOI URL PMID |
[32] | K. Guo, Q. Cao, X. Feng, M. Tang, H. Chen, X. Guo, L. Chen, Y. Grin, J. Zhao, Eur. J. Inorg. Chem. 2011 (2011) 4043-4048. |
[33] | J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, Z. Ren, Mater. Today Phys. 1 (2017) 74-95. |
[34] |
X. Wang, M. Tang, H. Chen, X. Yang, J. Zhao, U. Burkhardt, Y. Grin, Appl. Phys. Lett. 94 (2009) 92106.
DOI URL |
[35] |
J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh, NPJ Comput. Mater. 2 (2016) 15015.
DOI URL |
[36] | S. Kim, C. Kim, Y. Hong, T. Onimaru, K. Suekuni, T. Takabatake, M. Jung, J. Mater, Chem. A 2 (2014) 12311-12316. |
[37] | J. Zhang, L. Song, K.A. Borup, M.R.V. Jørgensen, B.B. Iversen,Adv. Energy Mater. 8 (2018), 1702776. |
[38] |
X. Zhang, H. Gu, Y. Zhang, L. Guo, J. Yang, S. Luo, X. Lu, K. Chen, H. Chai, G. Wang, X. Zhang, X. Zhou, Chem. Eng. J. 374 (2019) 589-595.
DOI URL |
[39] |
X. Chen, H. Wu, J. Cui, Y. Xiao, Y. Zhang, J. He, Y. Chen, J. Cao, W. Cai, S.J. Pennycook, Z. Liu, L. Zhao, J. Sui, Nano Energy 52 (2018) 246-255.
DOI URL |
[40] |
J.J. Kuo, Y. Yu, S.D. Kang, O.C. Mirédin, M. Wuttig, G.J. Snyder, Adv. Mater. Interfaces 6 (2019), 1900429.
DOI URL |
[41] |
J. Shuai, H.S. Kim, Z. Liu, R. He, J. Sui, Z. Ren, Appl. Phys. Lett. 108 (2016), 183901.
DOI URL |
[42] |
A.F. May, M.A. McGuire, D.J. Singh, R. Custelcean, G.E. Jellison, Inorg. Chem. 50 (2011) 11127-11133.
URL PMID |
[43] |
A.F. May, M.A. McGuire, D.J. Singh, J. Ma, O. Delaire, A. Huq, W. Cai, H. Wang, Phys. Rev. B 85 (2012), 035202.
DOI URL |
[44] |
X. Wang, J. Li, C. Wang, B. Zhou, L. Zheng, B. Gao, Y. Chen, Y. Pei, Chem. Mater. 30 (2018) 5339-5345.
DOI URL |
[45] |
L. Zheng, W. Li, X. Wang, Y. Pei, J. Mater. Chem. A 7 (2019) 12773-12778.
DOI URL |
[46] |
J. Zhang, L. Song, G.K.H. Madsen, K. F.F.Fischer, W. Zhang, X. Shi, B.B. Iversen, Nat. Commun. 7 (2016) 10892.
DOI URL PMID |
[47] |
J. Shuai, Z. Liu, H.S. Kim, Y. Wang, J. Mao, R. He, J. Sui, Z. Ren, J. Mater. Chem. A 4 (2016) 4312-4320.
DOI URL |
[48] |
H.J. Goldsmid, J.W. Sharp, J. Electron. Mater. 28 (1999) 869-872.
DOI URL |
[49] | E.S. Toberer, A.F. May, B.C. Melot, E. Flage-Larsen, G.J. Snyder, Dalton Trans. 39 (2010) 136-144. |
[50] |
A. Zevalkink, W.G. Zeier, E. Cheng, J. Snyder, J. Fleurial, S. Bux, Chem. Mater. 26 (2014) 5710-5717.
DOI URL |
[51] |
D.J. Singh, D. Parker, J. Appl. Phys. 114 (2013), 143703.
DOI URL |
[52] |
J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage, G. Chen, Z. Ren, Science 365 (2019) 495-498.
DOI URL PMID |
[53] |
A.F. May, E.S. Toberer, A. Saramat, G.J. Snyder, Phys. Rev. B 80 (2009), 125205.
DOI URL |
[54] |
J. Callaway, H.C.V. Baeyer, Phys. Rev. 120 (1960) 1149-1154.
DOI URL |
[55] | J. Callaway, Phys. Rev. 119 (1959) 1046-1051. |
[56] |
H.S. Kim, W. Liu, G. Chen, C. Chu, Z. Ren, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 8205-8210.
DOI URL PMID |
[1] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[2] | Bin Zhan, Jinle Lan, Yaochun Liu, Yuanhua Lin, Yang Shen, Cewen Nan. High Temperature Thermoelectric Properties of Dy-doped CaMnO3 Ceramics [J]. J. Mater. Sci. Technol., 2014, 30(8): 821-825. |
[3] | Haoshan Hao, Huizhi Yang, Yongtao Liu, Xing Hu. High-temperature Thermoelectric Properties of Cu-substituted Bi2Ba2Co2-xCuxOy Oxides [J]. J Mater Sci Technol, 2011, 27(6): 525-528. |
[4] | Cui Yu,Yun Zhang,Tiejun Zhu,Guangyu Jiang,Ji Xu,Bo Zhao,Xinabing Zhao. Preparation and Thermoelectric Properties of Zr1-xTixNiSn0:975Sb0:025 Half-Heusler Alloys [J]. J Mater Sci Technol, 2009, 25(06): 738-741. |
[5] | Haoshan Hao,Limin Zhao,Xing Hu. Microstructure and Thermoelectric Properties of Bi- and Cu-Substituted Ca3Co4O9 Oxides [J]. J Mater Sci Technol, 2009, 25(01): 105-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||