J. Mater. Sci. Technol. ›› 2020, Vol. 59: 180-188.DOI: 10.1016/j.jmst.2020.05.023
• Research Article • Previous Articles Next Articles
Hao Jianga, Xuemin Genga, Simin Lia, Hongyu Tua, Jiliang Wangb, Lixia Baob, Peng Yanga, Yanfen Wana,*()
Received:
2020-03-18
Revised:
2020-05-05
Accepted:
2020-05-12
Published:
2020-12-15
Online:
2020-12-18
Contact:
Yanfen Wan
Hao Jiang, Xuemin Geng, Simin Li, Hongyu Tu, Jiliang Wang, Lixia Bao, Peng Yang, Yanfen Wan. Multi-3D hierarchical biomass-based carbon particles absorber for solar desalination and thermoelectric power generator[J]. J. Mater. Sci. Technol., 2020, 59: 180-188.
Fig. 1. SEM images of various biomass powders: coffee powders (a, b, c), rose powders (d, e, f), straw powders (g, h, i), respectively. The raw powders were shown in (a, d, g) and the corresponding biomass CPs carbonized at 600 ℃ were shown in (b, c, e, f, h, i).
Fig. 2. SEM images of various biomass CPs: two different parts of rose CPs (a, b) and straw CPs (c). Simplified reflection schemes (d-f) of optical path corresponding to that of (a-c).
Fig. 3. XPS profiles of CPs, (a) survey; (b) C 1s; (c) N 1s; (d) O 1s; (e) XRD and (f) reflectivity of various samples’ surfaces. In XPS tests, three kinds of carbonized powders are obtained at a carbonization temperature of 600 °C.
Fig. 4. (a) Schematic illustration of solar steam generation with various ISSC design; (b-d) Infrared photo of different photothermal evaporation systems working at 60 min; (e) Rose-600-0.03 CPs mass change occurred under 1 sun irradiation in different evaporating systems corresponding to (a); (f) Dark evaporation rate (black column) and photothermal conversion efficiency (red line) of different systems.
Fig. 5. SEM images of three substrates: (a) air-laid paper, (b) modified PTFE, and (c) MCE; (d) Full wetting time of three substrates; Reflectivity of three substrates (e) bare and (f) coated with carbonized rose powder; (g) Repeated test of straw powder on air-laid paper substrate; (h) Mass change of rose CPs on air-laid paper, PTFE and MCE substrate; (i) Mass change of straw CPs on air-laid paper, PTFE and MCE substrate (the insets are the photothermal conversion efficiency for each test identified by color).
Fig. 6. (a) Mass change of rose at different carbonization temperatures; (b) Mass change of rose with different mass loadings; (c) Mass change of different carbonized biomass species; (d) Dependence of the ratio of D/G (red line) and conversion efficiency (black line) on the carbonization temperature, inset: the Raman spectra of rose samples at different carbonized temperature; (e) Photothermal conversion efficiency varies with mass loading of rose CPs; (f) Relationship between photothermal conversion efficiency and plant types. (g) Photo of the evaporation device under natural sunlight; (h) Ion concentration in simulating seawater (black) and purified water after evaporation (red); (i) Cycle performance of rose-600-0.03 for the simulated seawater.
[1] |
S. Zhuang, L. Zhou, W. Xu, N. Xu, X. Hu, X. Li, G. Lv, Q. Zheng, S. Zhu, Z. Wang, J. Zhu, Adv. Sci. 5 (2018) 1700497.
DOI URL |
[2] |
Y.W. Noh, I.S. Jin, S.H. Park, J.W. Jung, J. Mater. Sci. Technol. 42 (2020) 38-45.
DOI URL |
[3] | M.M. Rahman, Z.T. Jiang, C.Y. Yin, L.S. Chuah, H.L. Lee, A. Amri, B.M. Goh, B.J. Wood, C. Creagh, N. Mondinos, M. Altarawneh, B.Z. Dlugogorski, J. Mater. Sci. Technol. 32 (2016) 1179-1191. |
[4] |
X. Ju, C. Xu, Z. Liao, X. Du, G. Wei, Z. Wang, Y. Yang, Sci. Bull. 62 (2017) 1388-1426.
DOI URL |
[5] |
Z. Zheng, H. Li, X. Zhang, H. Jiang, X. Geng, S. Li, H. Tu, X. Cheng, P. Yang, Y. Wan, Nano Energy 68 (2020) 104298.
DOI URL |
[6] |
J. Gong, C. Li, M.R. Wasielewski, Chem. Soc. Rev. 48 (2019) 1862-1864.
DOI URL PMID |
[7] |
Z. Li, W. Wang, S. Liao, M. Liu, Y. Qi, C. Ding, C. Li, Energy Environ. Sci. 12 (2019) 631-639.
DOI URL |
[8] |
X. Wang, Y. He, X. Liu, L. Shi, J. Zhu, Sol. Energy 157 (2017) 35-46.
DOI URL |
[9] |
X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Energy Convers. Manage. 130 (2016) 176-183.
DOI URL |
[10] |
G. Liu, J. Xu, K. Wang, Nano Energy 41 (2017) 269-284.
DOI URL |
[11] |
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Nano Energy 57 (2019) 507-518.
DOI URL |
[12] |
G. Ni, G. Li, S.V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Nat. Energy 1 (2016) 16126.
DOI URL |
[13] | X. Wang, Y. He, X. Liu, G. Cheng, J. Zhu. Appl. Energy 195 (2017) 414-425. |
[14] |
P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031-1041.
DOI URL |
[15] |
Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, B. Yang, L. Hu, Adv. Mater. 29 (2017), 1700981.
DOI URL |
[16] |
Z. Sun, W. Li, W. Song, L. Zhang, Z. Wang, J. Mater. Chem. A 8 (2020) 349-357.
DOI URL |
[17] |
S. Cheng, S. Zhan, X. Wu, G. Nie, S. Wu, J. Hu, J. Li, S. Hu, Y. Zhang, Y. Liu, J. Alloys Compd. 791 (2019) 380-384.
DOI URL |
[18] | J. Zhou, Y. Gu, Z. Deng, L. Miao, H. Su, P. Wang, J. Shi, Sustain. Mater. Technol. 19 (2019), e00090. |
[19] |
F. Chen, D. Yang, H. Shen, M. Deng, Y. Zhang, G. Zhong, Y. Hu, L. Weng, Z. Luo, L. Wang, Chem. Commun. 55 (2019) 2789-2792.
DOI URL |
[20] |
C. Xiao, L. Chen, P. Mu, J. Jia, H. Sun, Z. Zhu, W. Liang, A. Li, Chemistryselect 4 (2019) 7891-7895.
DOI URL |
[21] |
B. Huo, D. Jiang, X. Cao, H. Liang, Z. Liu, C. Li, J. Liu, Carbon 142 (2019) 13-19.
DOI URL |
[22] |
C. Qi, C. Luo, Y. Tao, W. Lv, C. Zhang, Y. Deng, H. Li, J. Han, G. Ling, Q.H. Yang, Sci. China Mater. 62 (2019) 1-8.
DOI URL |
[23] |
J.R. Vélez-Cordero, J. Hernández-Cordero, Int. J. Therm. Sci. 96 (2015) 12-22.
DOI URL |
[24] |
X. Han, W. Zhang, X. Ma, C. Zhong, N. Zhao, W. Hu, Y. Deng, Adv. Mater. 31 (2019), 1808281.
DOI URL |
[25] |
X.W. Wu, H. Xie, Q. Deng, H.X. Wang, H. Sheng, Y.X. Yin, W.X. Zhou, R.L. Li, Y.G. Guo, ACS App Mater. Interfaces 9 (2017) 1553-1561.
DOI URL |
[26] |
P. Zhang, J. Li, L. Lv, Y. Zha, L. Qu, ACS Nano 11 (2017) 5087-5093.
DOI URL PMID |
[27] |
Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 27 (2015) 4302-4307.
DOI URL PMID |
[28] |
F. Wang, Z. Liu, X. Yuan, J. Mo, C. Li, L. Fu, Y. Zhu, X. Wu, Y. Wu, J. Mater. Chem. A 5 (2017) 14922-14929.
DOI URL |
[29] |
Y. Liu, J. Chen, D. Guo, M. Cao, L. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 13645-13652.
DOI URL PMID |
[30] |
Z. Liu, H. Song, D. Ji, C. Li, A. Cheney, Y. Liu, N. Zhang, X. Zeng, B. Chen, J. Gao, Y. Li, X. Liu, D. Aga, S. Jiang, Z. Yu, Q. Gan, Glob. Chall. 1 (2017), 1600003.
DOI URL PMID |
[31] |
M.W. Higgins, A.R. Shakeel Rahmaan, R.R. Devarapalli, M.V. Shelke, N. Jha, Sol. Energy 159 (2018) 800-810.
DOI URL |
[32] |
N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Mater. 29 (2017), 1606762.
DOI URL |
[33] |
Z. Li, C. Wang, T. Lei, H. Ma, J. Su, S. Ling, W. Wang, Adv. Sustain. Syst. 3 (2019), 1800144.
DOI URL |
[34] |
Y. Geng, K. Zhang, K. Yang, P. Ying, L. Hu, J. Ding, J. Xue, W. Sun, K. Sun, M. Li, Carbon 155 (2019) 25-33.
DOI URL |
[35] |
D.D. Qin, Y.J. Zhu, F.F. Chen, R.L. Yang, Z.C. Xiong, Carbon 150 (2019) 233-243.
DOI URL |
[36] |
Q. Hou, C. Xue, N. Li, H. Wang, Q. Chang, H. Liu, J. Yang, S. Hu, Carbon 149 (2019) 556-563.
DOI URL |
[37] |
H. Jin, Y. Bu, J. Li, J. Liu, X. Fen, L. Dai, J. Wang, J. Lu, S. Wang, Adv. Mater. 30 (2018) 1707424.
DOI URL |
[38] |
B. Li, R. Wang, Z. Chen, D. Sun, F. Fang, R. Wu, J. Mater. Chem. A 7 (2019) 1260-1266.
DOI URL |
[39] |
Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, C.M. Chen, J. Mater. Chem. A 7 (2019) 16028-16045.
DOI URL |
[40] |
H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 5 (2014) 4449.
DOI URL PMID |
[41] |
L. Yang, G. Chen, N. Zhang, Y. Xu, X. Xu, ACS Sustain. Chem. Eng. 7 (2019) 19311-19320.
DOI URL |
[42] |
L. Bao, X. Zou, S. Chi, S. Dong, J. Lei, J. Wang, Adv. Sustain. Syst. 2 (2018), 1800050.
DOI URL |
[43] | B. Bhushan, Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces With High and Low Adhesion, Springer International Publishing, 2016, pp. 213-241. |
[44] |
A.H. Rony, L. Kong, W. Lu, M. Dejam, H. Adidharma, K.A.M. Gasem, Y. Zheng, U. Norton, M. Fan, Bioresour. Technol. 284 (2019) 466-473.
URL PMID |
[45] |
W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Adv. Mater. 31 (2019), 1900720.
DOI URL |
[46] |
G. Chen, N. Zhang, N. Li, L. Yu, X. Xu, Adv. Mater. Interfaces 7 (2020), 1901715.
DOI URL |
[47] | R. Riaz, M. Ali, T. Maiyalagan, A.S. Anjum, S. Lee, M.J. Ko, S.H. Jeong, Appl. Surf.Sci. 483 (2019) 425-431. |
[48] |
J. Sodtipinta, C. Ieosakulrat, N. Poonyayant, P. Kidkhunthod, N. Chanlek, T. Amornsakchai, P. Pakawatpanurut, Ind. Crops Prod. 104 (2017) 13-20.
DOI URL |
[49] |
M. Zhu, J. Yu, C. Ma, C. Zhang, D. Wu, H. Zhu, Sol. Energy Mater. Sol. C 191 (2019) 83-90.
DOI URL |
[50] |
Q. Zhang, W. Xu, X. Wang, Sci. China Mater. 61 (2018) 905-914.
DOI URL |
[51] |
X. Luo, C. Huang, S. Liu, J. Zhong, Int. J. Energy Res. 42 (2018) 4830-4839.
DOI URL |
[52] |
Z. Wang, Y. Yan, X. Shen, C. Jin, Q. Sun, H. Li, J. Mater. Chem. A 7 (2019) 20706-20712.
DOI URL |
[53] |
Z. Guo, G. Wang, X. Ming, T. Mei, J. Wang, J. Li, J. Qian, X. Wang, ACS Appl. Mater. Interfaces 10 (2018) 24583-24589.
DOI URL PMID |
[54] |
X. Wu, M.E. Robson, J.L. Phelps, J.S. Tan, B. Shao, G. Owens, H. Xu, Nano Energy 56 (2019) 708-715.
DOI URL |
[55] |
S. Liu, C. Huang, Q. Huang, F. Wang, C. Guo, J. Mater. Chem. A 7 (2019) 17954-17965.
DOI URL |
[56] |
Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon Energy 1 (2019) 253-275.
DOI URL |
[57] |
Y. Xu, Y. Zhu, F. Han, C. Luo, C. Wang, Adv. Energy Mater. 5 (2015), 1400753.
DOI URL |
[58] |
C.M. Cheng, A.W. Martinez, J. Gong, C.R. Mace, S.T. Phillips, E. Carrilho, K.A. Mirica, G.M. Whitesides, Angew. Chem. Int. Ed. 49 (2010) 4771-4774.
DOI URL |
[59] |
Y. Li, Q.Y. Zhu, Text. Res. J. 73 (2003) 515-524.
DOI URL |
[60] |
F. Jiang, Y. Yao, B. Natarajan, C. Yang, T. Gao, H. Xie, Y. Wang, L. Xu, Y. Chen, J. Gilman, L. Cui, L. Hu, Carbon 144 (2019) 241-248.
DOI URL |
[61] |
E. Fleming, F. Du, E. Ou, L. Dai, L. Shi, Carbon 145 (2019) 195-200.
DOI URL |
[62] |
G. Liu, T. Chen, J. Xu, G. Li, K. Wang, J. Mater. Chem. A 8 (2020) 513-531.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||