J. Mater. Sci. Technol. ›› 2022, Vol. 99: 127-137.DOI: 10.1016/j.jmst.2021.05.038
• Research article • Previous Articles Next Articles
Huang Chunpinga,b,*(), Liang Renyua, Liu Fengganga, Yang Haioub, Lin Xinb,*(
)
Received:
2021-02-17
Revised:
2021-02-17
Accepted:
2021-02-17
Published:
2022-02-10
Online:
2022-02-09
Contact:
Huang Chunping,Lin Xin
About author:
xlin@nwpu.edu.cn (X. Lin).Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel[J]. J. Mater. Sci. Technol., 2022, 99: 127-137.
C | Cr | Ni | Mo | Mn | Si | Fe |
---|---|---|---|---|---|---|
0.34 | 1.5 | 1.5 | 0.25 | 0.50 | 0.40 | Balance |
Table 1 Alloying compositions of 34CrNiMo6 powder (wt.%).
C | Cr | Ni | Mo | Mn | Si | Fe |
---|---|---|---|---|---|---|
0.34 | 1.5 | 1.5 | 0.25 | 0.50 | 0.40 | Balance |
Sample Group | Laser power (W) | Beam diameter (mm) | Scan speed (mm/min) | Powder feed rate (g/min) | SE (J/mm2) | Q* |
---|---|---|---|---|---|---|
A | 700 | 1.2 | 600 | 6-8 | 58.33 | 1 |
B | 2800 | 2.5 | 600 | 10-15 | 112 | 1.9 |
C | 3400 | 2 | 600 | 10-15 | 170 | 2.9 |
Table 2 Processing parameters of laser solid forming for 34CrNiMo6 steel.
Sample Group | Laser power (W) | Beam diameter (mm) | Scan speed (mm/min) | Powder feed rate (g/min) | SE (J/mm2) | Q* |
---|---|---|---|---|---|---|
A | 700 | 1.2 | 600 | 6-8 | 58.33 | 1 |
B | 2800 | 2.5 | 600 | 10-15 | 112 | 1.9 |
C | 3400 | 2 | 600 | 10-15 | 170 | 2.9 |
Fig. 3. The macrostructure of LSFed steel block under different heat input conditions: (a) Q*=1; (b) Q*=1.9; (c) Q*=2.9; (d) the size of single pass deposition.
Fig. 7. Schematic diagram of the top and bottom of the LSFed sample under different heat input conditions: (a) Melt pool & Heat affected zone and (b) thermal cycle curve.
Fig. 8. The microhardness distribution from the top to the middle of LSFed samples with different heat input: (a) Q*=1; (b) Q*=1.9; (c) Q*=2.9; (d) average value of the stable area.
[1] |
R. Branco, J.D. Costa, F.V. Antunes, Theor. Appl. Fract. Mech. 58 (2012) 28-34.
DOI URL |
[2] | X.S. Wang, C.W. Li, L.Z. Han, H.Z. Zhong, J.F. Gu, J. Mater. Sci. Technol. 42 (2020) 77-86. |
[3] | A. Akyel, M.H. Kolstein, F.S.K. Bijlaard, Eng.Struct. 161 (2018) 28-40. |
[4] |
J. Liu, J. Li, C. Xu, H.M. Wang, J. Mater. Sci. Technol. 34 (2018) 69-78.
DOI URL |
[5] |
Y.L. Hu, X. Lin, Y.L. Li, Y.C. Ou, X.H. Gao, Q. Zhang, W. Li, W.D. Huang, J. Alloy. Compd. 870 (2021) 159426.
DOI URL |
[6] | W.D. Huang, X. Lin, 3D Print. Addit. Manuf. 1 (2014) 156-165. |
[7] |
W.J. Oh, W.J. Lee, M.S. Kim, J.B. Jeon, D.S. Shim, Opt. Laser Technol. 117 (2019) 6-17.
DOI URL |
[8] |
K.F. Walker, J.M. Lourenco, S. Sun, M. Brandt, C.H. Wang, Int. J. Fatigue 94 (2017) 288-301.
DOI URL |
[9] |
X. Lin, T.M. Yue, H.O. Yang, W.D. Huang, Acta Mater. 54 (2006) 1901-1915.
DOI URL |
[10] |
D. Carluccio, M. Bermingham, D. Kent, A.G. Demir, B. Previtali, M.S. Dargusch, Adv. Eng. Mater. 21 (2019) 1900049.
DOI URL |
[11] |
C.P. Huang, X. Lin, F.C. Liu, H.O. Yang, W.D. Huang, J. Mater. Sci. Technol. 35 (2019) 151-161.
DOI URL |
[12] |
G.Y. Jing, W.P. Huang, H.H. Yang, Z.M. Wang, J. Mater. Sci. Technol. 48 (2020) 44-56.
DOI URL |
[13] |
K.A. Mumtaz, N. Hopkinson, J. Mater. Process. Technol. 210 (2010) 279-287.
DOI URL |
[14] | T. Abe, J. Kaneko, H. Sasahara, Addit. Manuf. 35 (2020) 101357. |
[15] |
E. Aldalur, F. Veiga, A. Suarez, J. Bilbao, A. Lamikiz, J. Manuf. Process. 58 (2020) 615-626.
DOI URL |
[16] |
C.Y. Kong, R.J. Scudamore, J. Allen, Phys. Procedia 5 (2010) 379-386.
DOI URL |
[17] |
Z.X. Li, C.M. Liu, T.Q. Xu, L. Ji, D.H. Wang, J.P. Lu, S.Y. Ma, H.L. Fan, Mater. Sci. Eng. A 742 (2018) 287-294.
DOI URL |
[18] |
T. Mukherjee, V. Manvatkar, A. De, T. Debroy, J. Appl. Phys. 121 (2017) 064904.
DOI URL |
[19] |
T. Debroy, H.L. Wei, J. Zuback, T. Mukherjee, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[20] |
V.E. Maarten, A.B. Farid, J.P. Kruth, Rapid Prototyping J 14 (2008) 15-22.
DOI URL |
[21] |
R.Y. Liang, C.P. Huang, H.W. Hao, F.G. Liu, F.C. Liu, M.H. Song, L.M. Ke, J. Mater. Res. Technol. 9 (2020) 13870-13878.
DOI URL |
[22] |
P. Farahmand, R. Kovacevic, Opt. Laser Technol. 63 (2014) 154-168.
DOI URL |
[23] | R. Martukanitz, P. Michaleris, T. Palmer, T. Debroy, Z.K. Liu, R. Otis, T.W. Heo, L.Q. Chen, Addit. Manuf. 1-4 (2014) 52-63. |
[24] | P. Peyre, P. Aubry, R. Fabbro, R. Neveu, A. Longuet, J. Phys. D: Appl. Phys. 41 (2008) 369-374. |
[25] |
V. Manvatkar, A. De, T. Debroy, J. Appl. Phys. 116 (2014) 124905.
DOI URL |
[26] |
H. Yin, S.D. Felicelli, Acta Mater 58 (2010) 1455-1465.
DOI URL |
[27] |
J.W. Elmer, S.M. Allen, T.W. Eagar, Metall. Trans. A 20 (1989) 2117-2131.
DOI URL |
[28] | T. Mukherjee, W. Zhang, T. DebRoy, Manuf. Comput. Mater. Sci. 126 (2017) 360-372. |
[29] |
E. Mani, T. Udhayakumar, Mater. Sci. Eng. A 716 (2018) 92-98.
DOI URL |
[30] |
S. Mischler, A. Spiegel, D. Landolt, Wear 225-229 (1999) 1078-1087.
DOI URL |
[31] |
L. Chen, P.L. Nie, Z.X. Qu, O.A. Ojo, L.Q. Xia, Z.G. Li, J. Huang, J. Manuf. Process. 50 (2020) 132-141.
DOI URL |
[32] | Steels for Quenching and Tempering -Part 1: General Technical Delivery Con- ditions English Version of DIN EN 10083-1: 2006. 10. |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[3] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[4] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[5] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[6] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[7] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[8] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[9] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[10] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[11] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[12] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[13] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[14] | Peng Peng, Anqiao Zhang, Jinmian Yue, Shengyuan Li, Wanchao Zheng, Li Lu. Investigation on peritectic solidification in Sn-Ni peritectic alloys through in-situ observation [J]. J. Mater. Sci. Technol., 2021, 90(0): 236-242. |
[15] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||