J. Mater. Sci. Technol. ›› 2022, Vol. 99: 114-126.DOI: 10.1016/j.jmst.2021.04.063
• Research article • Previous Articles Next Articles
Yu Liao, Junhua Bai, Fuwen Chen*(), Guanglong Xu, Yuwen Cui*(
)
Received:
2021-02-17
Revised:
2021-02-17
Accepted:
2021-02-17
Published:
2022-02-10
Online:
2022-02-09
Contact:
Fuwen Chen,Yuwen Cui
About author:
ycui@njtech.edu.cn (Y. Cui).Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states[J]. J. Mater. Sci. Technol., 2022, 99: 114-126.
Alloy | Ti | Al | V | Fe | C | N | O | H |
---|---|---|---|---|---|---|---|---|
TC4 | Bal. | 5.98 | 4.10 | 0.03 | 0.014 | 0.003 | 0.083 | 0.0052 |
TC4-0.1Fe | Bal. | 5.92 | 4.05 | 0.13 | 0.015 | 0.006 | 0.110 | 0.0062 |
TC4-0.3Fe | Bal. | 5.99 | 4.09 | 0.33 | 0.012 | 0.004 | 0.084 | 0.0055 |
TC4-0.5Fe | Bal. | 5.95 | 4.07 | 0.52 | 0.014 | 0.003 | 0.076 | 0.0043 |
TC4-0.7Fe | Bal. | 5.92 | 4.02 | 0.73 | 0.016 | 0.005 | 0.081 | 0.0045 |
TC4-0.9Fe | Bal. | 5.99 | 4.10 | 0.91 | 0.013 | 0.004 | 0.033 | 0.0030 |
Table 1 The actual chemical compositions of the homogenization treated TC4 and TC4-xF alloys (wt.%).
Alloy | Ti | Al | V | Fe | C | N | O | H |
---|---|---|---|---|---|---|---|---|
TC4 | Bal. | 5.98 | 4.10 | 0.03 | 0.014 | 0.003 | 0.083 | 0.0052 |
TC4-0.1Fe | Bal. | 5.92 | 4.05 | 0.13 | 0.015 | 0.006 | 0.110 | 0.0062 |
TC4-0.3Fe | Bal. | 5.99 | 4.09 | 0.33 | 0.012 | 0.004 | 0.084 | 0.0055 |
TC4-0.5Fe | Bal. | 5.95 | 4.07 | 0.52 | 0.014 | 0.003 | 0.076 | 0.0043 |
TC4-0.7Fe | Bal. | 5.92 | 4.02 | 0.73 | 0.016 | 0.005 | 0.081 | 0.0045 |
TC4-0.9Fe | Bal. | 5.99 | 4.10 | 0.91 | 0.013 | 0.004 | 0.033 | 0.0030 |
Fig. 2. The mechanical properties of TC4 and TC4-xF alloys in the homogenization treated state, illustrating the variations of (a) yield strength σ0.2, (b) ultimate tensile strength σs, (c) elongation ε, (d) mode I fracture toughness KIC with the amount of Fe alloying. The fitted yield strength and fracture toughness (in hollow circles) are compared with the experimental data (in solid square).
Fig. 3. Optical microstructure of the homogenized TC4 and TC4-xF alloys. (a,a1) TC4, (b-b1) TC4-0.1F, (c-c1) TC4-0.3F, (d-d1) TC4-0.5F, (e-e1) TC4-0.4F, and (f-f1) TC4-0.9F. The prior-β grains are highlighted in black.
Fig. 4. SEM images of lamellar microstructure of the homogenized TC4 and TC4-xF alloys. (a) TC4, (b) TC4-0.1F, (c) TC4-0.3F, (d) TC4-0.5F, (e) TC4-0.4F, and (f) TC4-0.9F.
Fig. 5. Variations of microstructure features with the amount of Fe alloying in the homogenization treated TC4 and TC4-xF alloys (in black solid square). (a) prior-β grain size, (b) colony size, (c) relative volume fraction of colony, (d) relative volume fraction of α phase, (e) relative volume fraction of β phase, (f) average width of β lamellae, (g) average width of α lamellae, (h) average length of α lamellae. The data of as-rolled alloys [34] are compared in red solid dots, the aging-treated alloys are presented in blue solid dots [16], and the data from diffusion couples are indicated by light green dots [35](For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Alloy | TC4 | TC4-0.1Fe | TC4-0.3Fe | TC4-0.5Fe | TC4-0.7Fe | TC4-0.9Fe |
---|---|---|---|---|---|---|
Microstructure features | ||||||
wg (× 103μm) | 2.60 ± 0.14 | 2.36 ± 0.10 | 1.89 ± 0.13 | 1.67 ± 0.09 | 1.49 ± 0.08 | 1.23 ± 0.05 |
wcol (× 10 μm) | 1.80 ± 0.07 | 1.51 ± 0.09 | 1.36 ± 0.04 | 1.05 ± 0.04 | 0.94 ± 0.07 | 0.75 ± 0.05 |
Vcol (%) | 98.5 ± 0.3 | 97.4 ± 0.6 | 95.1 ± 0.7 | 91.1 ± 0.5 | 83.4 ± 1.0 | 74.4 ± 1.0 |
Vα(%) | 94.1 ± 0.9 | 94.1 ± 0.6 | 93.4 ± 1.0 | 92.5 ± 0.3 | 91.3 ± 0.5 | 89.6 ± 0.3 |
Vβ(%) | 5.9 ± 0.2 | 5.9 ± 0.2 | 6.6 ± 0.3 | 7.5 ± 0.1 | 8.8 ± 0.1 | 10.4 ± 0.1 |
wβ (× 10-2 μm) | 6.90 ± 0.54 | 7.20 ± 0.22 | 7.70 ± 0.16 | 9.00 ± 0.54 | 10.10 ± 0. 66 | 11.70 ± 0.26 |
wα (× 10-1 μm) | 6.80 ± 0.18 | 7.50 ± 0.2 | 7.80 ± 0.19 | 8.60 ± 0.22 | 9.00 ± 0.20 | 9.60 ± 0.26 |
lα (μm) | 6.52 ± 0.16 | 6.42 ± 0.18 | 6.34 ± 0.09 | 5.66 ± 0.18 | 5.49 ± 0.15 | 5.22 ± 0.012 |
Proportions of crack propagation distances in total crack length | ||||||
lcsl (%) | 55.32 ± 0.45 | 57.21 ± 1.04 | 57.97 ± 1.01 | 59.81 ± 0.64 | 59.12 ± 0.54 | 54.25 ± 1.21 |
lagl (%) | 28.12 ± 0.88 | 22.85 ± 0.35 | 23.22 ± 0.43 | 21.31 ± 0.12 | 22.71 ± 0.41 | 25.24 ± 0.14 |
lagc (%) | 17.12 ± 0.56 | 19.22 ± 0.09 | 18.92 ± 0.12 | 19.21 ± 0.51 | 18.14 ± 0.11 | 21.98 ± 0.22 |
Element composition in α and β phases | ||||||
Al in α (wt.%) | 6.14 ± 0.03 | 6.36 ± 0.23 | 6.52 ± 0.24 | 6.66 ± 0.23 | 6.74 ± 0.18 | 7.12 ± 0.19 |
V in β (wt.%) | 10.79 ± 0.46 | 8.85 ± 0.22 | 8.22 ± 0.22 | 7.02 ± 0.41 | 6.37 ± 0.07 | 5.83 ± 0.15 |
Fe in β (wt.%) | 0.70 ± 0.08 | 0.92 ± 0.11 | 1.49 ± 0.33 | 1.79 ± 0.29 | 1.87 ± 0.16 | 2.17 ± 0.15 |
Mechanical properties | ||||||
σ0.2 (MPa) | 716.7 ± 3.4 | 749.3 ± 1.1 | 765.9 ± 6.1 | 805.5 ± 2.4 | 799.2 ± 2.8 | 803.1 ± 4.4 |
σs (MPa) | 804.7 ± 9.5 | 824.3 ± 7.5 | 829.7 ± 8.0 | 861.9 ± 5.2 | 853.9 ± 3.9 | 858.4 ± 6.3 |
ε (%) | 7.0 ± 0.4 | 8.5 ± 0.5 | 10.0 ± 0.7 | 10.0 ± 0.7 | 8.5 ± 0.5 | 6.0 ± 0.4 |
KIC (MPa•m-1/2) | 58.0 ± 0.3 | 58.7 ± 0.3 | 59.7 ± 0.3 | 60.9 ± 0.1 | 60.3 ± 0. | 58.2 ± 0.1 |
Table 2 The summary of microstructure features, proportions of different crack propagation distances in total crack length, average element distribution in α/β phases, mechanical properties of the homogenization treated TC4 and TC4-xF alloys.
Alloy | TC4 | TC4-0.1Fe | TC4-0.3Fe | TC4-0.5Fe | TC4-0.7Fe | TC4-0.9Fe |
---|---|---|---|---|---|---|
Microstructure features | ||||||
wg (× 103μm) | 2.60 ± 0.14 | 2.36 ± 0.10 | 1.89 ± 0.13 | 1.67 ± 0.09 | 1.49 ± 0.08 | 1.23 ± 0.05 |
wcol (× 10 μm) | 1.80 ± 0.07 | 1.51 ± 0.09 | 1.36 ± 0.04 | 1.05 ± 0.04 | 0.94 ± 0.07 | 0.75 ± 0.05 |
Vcol (%) | 98.5 ± 0.3 | 97.4 ± 0.6 | 95.1 ± 0.7 | 91.1 ± 0.5 | 83.4 ± 1.0 | 74.4 ± 1.0 |
Vα(%) | 94.1 ± 0.9 | 94.1 ± 0.6 | 93.4 ± 1.0 | 92.5 ± 0.3 | 91.3 ± 0.5 | 89.6 ± 0.3 |
Vβ(%) | 5.9 ± 0.2 | 5.9 ± 0.2 | 6.6 ± 0.3 | 7.5 ± 0.1 | 8.8 ± 0.1 | 10.4 ± 0.1 |
wβ (× 10-2 μm) | 6.90 ± 0.54 | 7.20 ± 0.22 | 7.70 ± 0.16 | 9.00 ± 0.54 | 10.10 ± 0. 66 | 11.70 ± 0.26 |
wα (× 10-1 μm) | 6.80 ± 0.18 | 7.50 ± 0.2 | 7.80 ± 0.19 | 8.60 ± 0.22 | 9.00 ± 0.20 | 9.60 ± 0.26 |
lα (μm) | 6.52 ± 0.16 | 6.42 ± 0.18 | 6.34 ± 0.09 | 5.66 ± 0.18 | 5.49 ± 0.15 | 5.22 ± 0.012 |
Proportions of crack propagation distances in total crack length | ||||||
lcsl (%) | 55.32 ± 0.45 | 57.21 ± 1.04 | 57.97 ± 1.01 | 59.81 ± 0.64 | 59.12 ± 0.54 | 54.25 ± 1.21 |
lagl (%) | 28.12 ± 0.88 | 22.85 ± 0.35 | 23.22 ± 0.43 | 21.31 ± 0.12 | 22.71 ± 0.41 | 25.24 ± 0.14 |
lagc (%) | 17.12 ± 0.56 | 19.22 ± 0.09 | 18.92 ± 0.12 | 19.21 ± 0.51 | 18.14 ± 0.11 | 21.98 ± 0.22 |
Element composition in α and β phases | ||||||
Al in α (wt.%) | 6.14 ± 0.03 | 6.36 ± 0.23 | 6.52 ± 0.24 | 6.66 ± 0.23 | 6.74 ± 0.18 | 7.12 ± 0.19 |
V in β (wt.%) | 10.79 ± 0.46 | 8.85 ± 0.22 | 8.22 ± 0.22 | 7.02 ± 0.41 | 6.37 ± 0.07 | 5.83 ± 0.15 |
Fe in β (wt.%) | 0.70 ± 0.08 | 0.92 ± 0.11 | 1.49 ± 0.33 | 1.79 ± 0.29 | 1.87 ± 0.16 | 2.17 ± 0.15 |
Mechanical properties | ||||||
σ0.2 (MPa) | 716.7 ± 3.4 | 749.3 ± 1.1 | 765.9 ± 6.1 | 805.5 ± 2.4 | 799.2 ± 2.8 | 803.1 ± 4.4 |
σs (MPa) | 804.7 ± 9.5 | 824.3 ± 7.5 | 829.7 ± 8.0 | 861.9 ± 5.2 | 853.9 ± 3.9 | 858.4 ± 6.3 |
ε (%) | 7.0 ± 0.4 | 8.5 ± 0.5 | 10.0 ± 0.7 | 10.0 ± 0.7 | 8.5 ± 0.5 | 6.0 ± 0.4 |
KIC (MPa•m-1/2) | 58.0 ± 0.3 | 58.7 ± 0.3 | 59.7 ± 0.3 | 60.9 ± 0.1 | 60.3 ± 0. | 58.2 ± 0.1 |
Fig. 6. TEM images of lamellar α/β microstructure and local distribution of chemical compositions in the homogenization treated TC4 and TC4-xF alloys (a-a1) TC4, (b-b1) TC4-0.3F, (c-c1) TC4-0.9F.
Fig. 7. Variations of the average chemical compositions of α and β phases in the homogenization treated TC4 and TC4-xF alloys with the minor alloying addition of Fe.
Fig. 8. SEM images of crack propagation and phase morphology near the cracks in the homogenization treated TC4 and TC4-xF alloys. The types of crack propagation pathways, namely, across α/β lamellae, along colony boundary, and along α/β phase boundary are shown. (a) TC4, (b) TC4-0.1F, (c) TC4-0.3F, (d) TC4-0.5F, (e) TC4-0.7F, and (f) TC4-0.9F.
Coefficient | Value | Refs. |
---|---|---|
σα | 89 | [ |
σβ | 45 | [ |
n1 | 0.7 | [ |
n2 | 0.667 | [ |
n3 | -0.5 | [ |
KAl | 112 | This work |
KV | 22 | This work |
KFe | 209 | This work |
Cα | 123 | This work |
Ccol | 28 | This work |
Cg | 7 | This work |
R0α | 82.36 | This work |
Ragl=R0β | 29.22 | This work |
Ragc | 42.95 | This work |
Table 3 The coefficients in numerical analyzing the microstructural strengthening and toughening factors.
Coefficient | Value | Refs. |
---|---|---|
σα | 89 | [ |
σβ | 45 | [ |
n1 | 0.7 | [ |
n2 | 0.667 | [ |
n3 | -0.5 | [ |
KAl | 112 | This work |
KV | 22 | This work |
KFe | 209 | This work |
Cα | 123 | This work |
Ccol | 28 | This work |
Cg | 7 | This work |
R0α | 82.36 | This work |
Ragl=R0β | 29.22 | This work |
Ragc | 42.95 | This work |
Fig. 9. The contributions of the individual strengthening factors to the absolute values of yield strengths σ0.2 of the homogenization treated TC4 and TC4-xF alloys.
Fig. 10. The contributions of the crack propagation resistances from different cracking paths to the overall fracture toughness KIC of the homogenization treated TC4 and TC4-xF alloys.
Alloy | TC4 | TC4-0.1Fe | TC4-0.3Fe | TC4-0.5Fe | TC4-0.7Fe | TC4-0.9Fe |
---|---|---|---|---|---|---|
Rcsl | 77.46 | 77.41 | 77.59 | 77.33 | 77.00 | 76.59 |
lcsl% × Rcsl | 42.61 | 44.29 | 45.00 | 46.40 | 45.43 | 41.36 |
KIC_calc | 58.09 | 59.17 | 59.88 | 60.69 | 59.88 | 58.11 |
Table 4 The contribution of crack propagation traversing α/β lamellae to the overall fraction toughness of alloy.
Alloy | TC4 | TC4-0.1Fe | TC4-0.3Fe | TC4-0.5Fe | TC4-0.7Fe | TC4-0.9Fe |
---|---|---|---|---|---|---|
Rcsl | 77.46 | 77.41 | 77.59 | 77.33 | 77.00 | 76.59 |
lcsl% × Rcsl | 42.61 | 44.29 | 45.00 | 46.40 | 45.43 | 41.36 |
KIC_calc | 58.09 | 59.17 | 59.88 | 60.69 | 59.88 | 58.11 |
Fig. 11. The summary of mechanical properties of TC4 and TC4-xF alloys in different thermal-mechanical processing conditions. The variations of mechanical properties with the amount of Fe alloying are presented. The mechanical properties in the homogenization treated state are compared with those of hot-worked and aging treated states (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
Fig. 12. The linear regression between the measured fracture toughness of the homogenized TC4-xF alloys and the parameter. $\lambda =\frac{{{\sigma }_{s}}-{{\sigma }_{0.2}}}{\varepsilon }$
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[2] |
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5 (2003) 419-427.
DOI URL |
[3] | P. Singh, H. Pungotra, N.S. Kalsi, Mater,TodayProc. 4 (2017) 8971-8982. |
[4] | G. Lütjering, J.C. Williams, in: Titanium, 2 Ed., Springer, Heidelberg, 2007, pp. 203-258. |
[5] |
L. Lan, X. Jin, S. Gao, B. He, Y. Rong, J. Mater. Sci. Technol. 50 (2020) 153-161.
DOI URL |
[6] |
Y. Zhang, Z. Chen, S. Qu, A. Feng, G. Mi, J. Shen, X. Huang, D. Chen, J. Mater. Sci. Technol. 70 (2021) 113-124.
DOI URL |
[7] |
H. Tan, M. Guo, A.T. Clare, X. Lin, J. Chen, W. Huang, J. Mater. Sci. Technol. 35 (2019) 2027-2037.
DOI |
[8] |
X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Acta Mater. 97 (2015) 1-16.
DOI URL |
[9] |
W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura, Powder Technol. 331 (2018) 74-97.
DOI URL |
[10] |
I. Sen, S. Tamirisakandala, D.B. Miracle, U. Ramamurty, Acta Mater. 55 (2007) 4 983-4 993.
DOI URL |
[11] |
S. Tamirisakandala, R.B. Bhat, J.S. Tiley, D.B. Miracle, Scr. Mater. 53 (2005) 1421-1426.
DOI URL |
[12] | Z. Liang, J. Miao, T. Brown, A.K. Sachdev, J.C. Williams, A.A. Luo, Scr.Mater. 157 (2018) 124-128. |
[13] | X. Zhu, H. Chang, Y. Xie, L. Ding, L. Li, Y. Cui, J. Li, J. Tang, L. Zhou, Rare Met. Mater. Eng. 46 (2017) 204-210 (in Chinese). |
[14] | X. Liu, X. Zhu, Y. Guo, Y. Dong, Z. Dan, H. Chang, L. Zhou, Rare Met. Mater. Eng. 48 (2019) 3476-3486. |
[15] | Y. Fan, J. Cao, H. Yang, Z. Chen, L. Li, Heat Treat. Met. 38 (2013) 21-23. |
[16] |
F. Chen, Y. Gu, G. Xu, Y. Cui, H. Chang, L. Zhou, Mater. Des. 185 (2020) 108251.
DOI URL |
[17] |
Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Scr. Mater. 172 (2019) 77-82.
DOI URL |
[18] |
Y. Chong, T. Bhattacharjee, Y. Tian, A. Shibata, N. Tsuji, J. Mater. Sci. Technol. 71 (2021) 138-151.
DOI |
[19] |
W. Yuan, W. Hou, S. Li, Y. Hao, R. Yang, L.C. Zhang, Y. Zhu, J. Mater. Sci. Technol. 34 (2018) 1127-1131.
DOI |
[20] |
M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, O. Toriyama, Metall. Mater. Trans. A 26 (1995) 1141-1151.
DOI URL |
[21] | G. Cao, Ti. Yu, X. Wang, N. Zhang, H. Liu, J. Liu, Hot Work Technol. 49 (2020) 99-103. |
[22] | Y. Liu, F. Chen, G. Xu, Y. Cui, H. Chang, Metals 10 (2020) 854 (Basel). |
[23] |
R.K. Gupta, V.A. Kumar, U.V. Gururaja, K. Subramani, U. Prakash, K.V.A. Chakravarthi, P.R. Kumar, P. Sarkar, Met. Sci. Heat Treat. 57 (2015) 169-174.
DOI URL |
[24] |
W. Liu, Y. Lin, Y. Chen, T. Shi, S. Ambrish, Rare Met. Mater. Eng. 46 (2017) 634-639.
DOI URL |
[25] | L. Qi, L. Huang, X. Zhao, H. Xu, Trans. Mater. Heat Treat. S1 (2015) 78-83 (in Chinese). |
[26] | X. Tang, X. Shi, Y. Du, Hot Working Technol. 40 (2011) 196-198 (in Chinese). |
[27] |
D. Eylon, C.M. Pierce, Metall. Trans. A 7 (1976) 111-121.
DOI URL |
[28] | M.J. Donachie, in: Titanium: A Technical Guide, ASM International, Ohio, 2000, pp. 95-117. |
[29] |
D. Dickel, D.K. Francis, C.D. Barrett, Comput. Mater. Sci. 171 (2020) 109157.
DOI URL |
[30] |
G. Buffa, L. Fratini, F. Micari, J. Manuf. Process. 14 (2012) 289-296.
DOI URL |
[31] | Y. Sun, W. Zeng, Y. Han, X. Ma, Y. Zhao, P. Guo, G. Wang, M.S. Dargusch, Com- put. Mater. Sci. 60 (2012) 239-244. |
[32] | Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, Testing-Part 1: Method of Test at Room Temperature, Standards Press of China, Beijing, 2011. |
[33] | Metallic Materials-Unified Method of Test for Determination of Quasistatic Fracture Toughness, Standards Press of China, Beijing, 2014. |
[34] | W. Duan, Z. Dan, H. Chang, L. Zhou, in: Proceedings of the 4th Congress on Marine Materials and Corrosion Protection, Zhanjiang, China, 2017 December 9-11. |
[35] |
D. Wu, L. Zhang, L. Liu, W. Bai, L. Zeng, Trans. Nonferrous Met. Soc. China 28 (2018) 1714-1723.
DOI URL |
[36] |
M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch, J. Mater. Res. 24 (2009) 1529-1535.
DOI URL |
[37] |
M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. StJohn, J. Mater. Res. 23 (2008) 97-104.
DOI URL |
[38] |
H. Bo, J. Wang, L. Duarte, C. Leinenbach, L. Liu, H. Liu, Z. Jin, Trans. Nonferrous Met. Soc. China 22 (2012) 2204-2211.
DOI URL |
[39] |
B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133 (2017) 120-133.
DOI URL |
[40] |
I. Ghamarian, B. Hayes, P. Samimi, B.A. Welk, H.L. Fraser, P.C. Collins, Mater. Sci. Eng. A 660 (2016) 172-180.
DOI URL |
[41] | X. Wen, M. Wan, C. Huang, M. Lei, Mater. Sci. Eng.A 740-741 (2019) 121-129. |
[42] | P.C. Collins, H.L. Fraser, in: D.U. Furrer, S.L. Semiatin (Eds.), ASM Handbook: Fundamentals of Modeling for Metals Processing, ASM International, Ohio, 2009, pp. 377-399. |
[43] |
P. Gao, H. Yang, X. Fan, S. Zhu, J. Alloy. Compd. 600 (2014) 78-83.
DOI URL |
[44] |
I. Ghamarian, P. Samimi, V. Dixit, P.C. Collins, Metall. Mater. Trans. A 46 (2015) 5021-5037.
DOI URL |
[45] |
N.L. Richards, J. Mater. Eng. Perform. 13 (2004) 218-225.
DOI URL |
[46] |
X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang, X. Cai, Mater. Des. 180 (2019) 107898.
DOI URL |
[47] | J.J. Moré, in: G.A. Watson (Ed.), Lecture Notes in Mathematics, Springer, Hei- delberg, 1978, pp. 105-116. |
[48] |
Z. Shi, H. Guo, J. Zhang, J. Yin, Trans. Nonferrous Met. Soc. China 28 (2018) 2440-2448.
DOI URL |
[49] |
R. Reda, A. Nofal, A.H. Hussein, Metallogr. Microstruct. Anal. 2 (2013) 388-393.
DOI URL |
[50] |
Z.X. Zhang, S.J. Qu, A.H. Feng, X. Hu, J. Shen, J. Alloy. Compd. 773 (2019) 277-287.
DOI |
[51] |
T. He, Y. Feng, Y.S. He, Y.J. Lai, W.Z. Luo, W.D. Wang, J.C. Du, Mater. Res. Innov. 19 (2015) S205-S208.
DOI URL |
[52] | Y. Wu, Y. Guo, G. Xu, H. Chang, Y. Cui, Metals 9 (2019) 628 (Basel). |
[53] | R. Reda, A.H. Hussein, A. Nofak, E. Banna, Int. J. Mech. Prod. Eng. Res. Dev. 5 (2015) 83-104. |
[54] |
D.G. Lee, S. Lee, Y. Lee, Mater. Sci. Eng. A 486 (2008) 19-26.
DOI URL |
[55] | S.T. Oh, K.D. Woo, T. Lee, H.C. Lee, W.J. Kang, in: Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, Barcelona, Spain, 2015 July 20-21. |
[56] | R. Sherman, H. Kessler, Trans. ASM 48 (1956) 657-676. |
[57] | J.C. Williams, A.F. Belov, A.N. Sssr, in: Titanium and Titanium Alloys: Scientific and Technological Aspects, Volume 1, Plenum Press, New York and London, 1982, pp. 601-613. |
[58] | W. Gerhard, R. Boyer, E.W. Ohio, 1993, p. 588. |
[59] | J.C. Williams, E.A. Starke, in: G. Krauss (Ed.) Deformation, Processing, and Structure, ASM International, Ohio, 1984, pp. 306-314. |
[60] | R. Curtis, W. Spurr, Trans. ASM 61 (1968) 115-127. |
[61] | G.X. Chen, J. Hubei Polytech. Univ. 36 (2020) 34-38 (in Chinese). |
[62] | H. Wang, C. Zhang, Hot Work. Technol. 43 (2014) 192-193 (in Chinese). |
[63] | R. Wang, J. Yang, L. Lv, W. Gao, Titan. Ind. Prog. 27 (2010) 27-29. |
[64] | L. Li, Spec. Steel Technol. 20 (2014) 29-31 (in Chinese). |
[65] | G. Du, X. Sun, Y. Gao, W. Wang, X. Liu, Rare Met. Mater. Eng. 47 (2018) 1941-1944 (in Chinese). |
[66] |
H. Li, N. Chandra, Int. J. Plast. 19 (2003) 849-882.
DOI URL |
[67] | B. Babu, L.-.E. Lindgren, Int.J. Plast. 50 (2013) 94-108. |
[68] |
Y. Htwe, K. Kwak, D. Kishi, Y. Mine, R. Ding, P. Bowen, K. Takashima, Mater. Sci. Eng. A 715 (2018) 315-319.
DOI URL |
[1] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[2] | Xin Gai, Rui Liu, Yun Bai, Shujun Li, Yang Yang, Shenru Wang, Jianguo Zhang, Wentao Hou, Yulin Hao, Xing Zhang, Rui Yang, R.D.K. Misra. Electrochemical behavior of open-cellular structured Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid: the significance of pore characteristics [J]. J. Mater. Sci. Technol., 2022, 97(0): 272-282. |
[3] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[4] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[5] | J. Dong, J. Shen, Y.H. Sun, H.B. Ke, B.A. Sun, W.H. Wang, H.Y. Bai. Composition and size dependent torsion fracture of metallic glasses [J]. J. Mater. Sci. Technol., 2021, 82(0): 153-160. |
[6] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[7] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[8] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[9] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[10] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[11] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
[12] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[13] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[14] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
[15] | Wei Fan, Hua Tan, Fengying Zhang, Zhe Feng, Yongxia Wang, Lai-Chang Zhang, Xin Lin, Weidong Huang. Overcoming the limitation of in-situ microstructural control in laser additive manufactured Ti-6Al-4V alloy to enhanced mechanical performance by integration of synchronous induction heating [J]. J. Mater. Sci. Technol., 2021, 94(0): 32-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||