J. Mater. Sci. Technol. ›› 2022, Vol. 98: 244-247.DOI: 10.1016/j.jmst.2021.03.088
• Letter • Previous Articles Next Articles
T. Fang X.a, K. Li Z.a,b, F. Wang Y.a,c, M. Ruiza, L. Ma X.d,*(), Y. Wang H.e, Y. Zhue, R. Schoellf, C. Zhengf,g, D. Kaoumif, T. Zhu Y.a,*(
)
Revised:
2021-03-02
Published:
2022-01-30
Online:
2022-01-25
Contact:
L. Ma X.,T. Zhu Y.
About author:
ytzhu@ncsu.edu (Y.T. Zhu)T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures[J]. J. Mater. Sci. Technol., 2022, 98: 244-247.
Fig. 1. (a) Strain-stress curves of the samples fabricated by different processing routes; (b) Strain hardening rate curves of the samples; (c) Comparison of mechanical properties of brass samples with different structures [25], [26], [27], [28], [29].
Fig. 2. Representative microstructure starting from surface (a) RASP and (b) PA+RASP samples; (c) and (d) TEM image of the nano/ultrafine layer of PA+RASP samples (< 30 μm) and grain size statistic of the nano/ultrafine layer; EBSD image of (e) RASP and (f) PA+RASP at depth ~ 100 μm; TEM image of (g) RASP and (h) PA+RASP at depth ~ 100 μm.
Fig. 3. (a) Hardness profile of three different samples; (b) Increment of hardness after 3% of tensile plastic deformation (the shaded area indicates the peak of the hardness profile).
Depth | PA+RASP | RASP |
---|---|---|
~100 μm | 0.76 | 1.77 |
~250 μm | 2.70 | 4.42 |
Table 1 . Dislocation density increment at 3% tensile strain ( × 1014 m-2).
Depth | PA+RASP | RASP |
---|---|---|
~100 μm | 0.76 | 1.77 |
~250 μm | 2.70 | 4.42 |
[1] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[2] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[3] |
Y. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, N. Tsuji, X. Zhang, X. Wu, Mater. Res. Lett. 9 (2021) 1-31.
DOI URL |
[4] |
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. 112 (2015) 14501-14505.
DOI URL |
[5] |
Y.F. Wang, C.X. Huang, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu, Scr. Mater. 174 (2020) 19-23.
DOI URL |
[6] |
Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, Y.T. Zhu, Int. J. Plast. 123 (2019) 196-207.
DOI URL |
[7] |
X.T. Fang, G.Z. He, C. Zheng, X.L. Ma, D. Kaoumi, Y.S. Li, Y.T. Zhu, Acta Mater. 186 (2020) 644-655.
DOI URL |
[8] | Z.K. Li, X.T. Fang, Y.F. Wang, P. Jiang, J.J. Wang, C.M. Liu, X.L. Wu, Y.T. Zhu, C.C. Koch, Mater. Sci. Eng. A (2020) 139074. |
[9] |
Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419 (2002) 912-915.
DOI URL |
[10] |
B.O. Han, E.J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Metall. Mater. Trans. A 36 (2005) 957-965.
DOI URL |
[11] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[12] |
X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. 111 (2014) 7197-7201.
DOI URL |
[13] |
Z. Zhang, S.K. Vajpai, D. Orlov, K. Ameyama, Mater. Sci. Eng. A 598 (2014) 106-113.
DOI URL |
[14] |
S.K. Vajpai, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, T. Kusaka, K. Ameyama, Metall. Mater. Trans. A 46 (2015) 903-914.
DOI URL |
[15] |
K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Mater. Sci. Eng. A 604 (2014) 135-141.
DOI URL |
[16] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 658-670.
DOI URL |
[17] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116 (2016) 43-52.
DOI URL |
[18] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[19] |
X. Fang, G. He, M. Ruiz, C. Zheng, Y. Wang, Z. Li, Y. Zhu, Lett. Mater. 9 (2019) 556-560.
DOI URL |
[20] |
E. Ma, X. Wu, Nat. Commun. 10 (2019) 5623.
DOI URL |
[21] |
X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112 (2016) 337-346.
DOI URL |
[22] |
N. Guo, Z. Zhang, Q. Dong, H. Yu, B. Song, L. Chai, C. Liu, Z. Yao, M.R. Daymond, Mater. Des. 143 (2018) 150-159.
DOI URL |
[23] |
X. Wang, Y.S. Li, Q. Zhang, Y.H. Zhao, Y.T. Zhu. J. Mater. Sci. Technol. 33 (2017) 758-761.
DOI |
[24] |
D. Song, G. Wang, Z. Zhou, E.E. Klu, B. Gao, A. Ma, Y. Wu, J. Sun, J. Jiang, X. Ma, Mater. Sci. Eng. A 773 (2020) 138880.
DOI URL |
[25] |
H. Bahmanpour, K.M. Youssef, J. Horky, D. Setman, M.A. Atwater, M.J. Zehetbauer, R.O. Scattergood, C.C. Koch, Acta Mater. 60 (2012) 3340-3349.
DOI URL |
[26] | J.R. Davis, ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Materials Park, ASM International, Ohio, 2000. |
[27] |
B. Cai, X. Ma, J. Moering, H. Zhou, X. Yang, X. Zhu, Mater. Sci. Eng. A 626 (2015) 144-149.
DOI URL |
[28] | G.H. Xiao, N.R. Tao, K. Lu, Mater. Sci. Eng.A 513-514 (2009) 13-21. |
[29] |
Y.F. Wang, C.X. Huang, M.S. Wang, Y.S. Li, Y.T. Zhu, Scr. Mater. 150 (2018) 22-25.
DOI URL |
[30] |
N. Tao, H. Zhang, J. Lu, K. Lu, Mater. Trans. 44 (2003) 1919-1925.
DOI URL |
[31] |
J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Acta Mater. 49 (2001) 1497-1505.
DOI URL |
[32] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[1] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[2] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[3] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[4] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[5] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[6] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[7] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
[8] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[9] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[10] | Zhenni Lei, Pengfei Gao, Xianxian Wang, Mei Zhan, Hongwei Li. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming [J]. J. Mater. Sci. Technol., 2021, 86(0): 77-90. |
[11] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[12] | Ming Gao, Ke Yang, Lili Tan, Zheng Ma. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing [J]. J. Mater. Sci. Technol., 2021, 81(0): 88-96. |
[13] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[14] | Hongge Li, Yongjiang Huang, Jianfei Sun, Yunzhuo Lu. The relationship between thermo-mechanical history, microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 187-195. |
[15] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||