J. Mater. Sci. Technol. ›› 2021, Vol. 80: 150-162.DOI: 10.1016/j.jmst.2020.11.055
• Research Article • Previous Articles Next Articles
Ruiqing Lua, Shuwei Zhenga, Jie Tenga,b,*(), Jiamin Hua,c, Dingfa Fua,b, Jianchun Chenb,d, Guodong Zhaob,d, Fulin Jianga,b,*(
), Hui Zhanga,b
Received:
2020-09-24
Accepted:
2020-11-18
Published:
2020-12-24
Online:
2020-12-24
Contact:
Jie Teng,Fulin Jiang
About author:
jfling2820@163.com, fulin.jiang.88@hnu.edu.cn (F. Jiang).Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach[J]. J. Mater. Sci. Technol., 2021, 80: 150-162.
Fig. 1. Schematic diagrams of (a) the double-pass CEEF approach and (b) expansion extrusion die. (c) Picture showing the as-received sample (φ = 10 mm), single-pass CEEF processed sample (φ = 16 mm) and double-pass CEEF processed sample (φ = 28 mm).
Fig. 2. OM, EBSD and misorientation angle distribution images of the as-received Al-Mg-Si alloy rod (φ = 10 mm):(a) OM image, (b), (c) and (d) EBSD inverse pole figures (IPFs), (e), (f) and (g) misorientation angle distribution images.
Fig. 3. OM, EBSD and misorientation angle distribution images of the single-pass CEEF processed Al-Mg-Si alloy rod (φ = 16 mm):(a) OM image, (b), (c) and (d) EBSD IPFs, (e), (f) and (g) misorientation angle distribution images.
Fig. 4. OM, EBSD and misorientation angle distribution images of the double-pass CEEF processed Al-Mg-Si alloy rod (φ = 28 mm):(a) OM image, (b), (c) and (d) EBSD IPFs, (e), (f) and (g) misorientation angle distribution images,(h) enlarged area of EBSD maps of (b).
Fig. 5. TEM micrographs of (a) & (b) the as-received Al-Mg-Si alloy sample (φ = 10 mm), (c) single-pass CEEF processed sample (φ = 16 mm) and double-pass CEEF processed samples (φ = 28 mm) with (d) water quenching or (e) air cooling.
Fig. 6. TEM micrographs of the Al-Mg-Si alloys aged at 175 °C for 8 h: (a) & (b) the as-received sample ( φ = 10 mm) and double-pass CEEF processed samples (φ = 28 mm) with (c) & (d) air cooling or (e) & (f) water quenching. (g) The aspect ratio of rod/needle-shaped precipitates in above samples.
Fig. 7. HRTEM images of the Al-Mg-Si alloys aged at 175 °C for 8 h: (a) the as-received sample ( φ = 10 mm) and double-pass CEEF processed samples (φ = 28 mm) with (b) air cooling or (c) water quenching.
Fig. 8. Mechanical properties of the as-received Al-Mg-Si alloy sample (φ = 10 mm) and double-pass CEEF processed samples (φ = 28 mm) with air cooling or water quenching: (a) microhardness; (b) engineering stress-strain curves.
Fig. 9. Mechanical properties of the as-received Al-Mg-Si alloy sample (φ = 10 mm) and double-pass CEEF processed samples (φ = 28 mm) with air cooling or water quenching after artificial aging (175 °C/8 h): (a) microhardness; (b) engineering stress-strain curves. For the air cooled specimen, additional solid solution treatment at 520 °C for 2 h was implemented before artificial aging.
Fig. 10. Finite element simulation analysis of the second pass CEEF process: (a) effective strain; (b) effective strain rate; (c) deformation temperature and (d) the schematic diagram of the extended extrusion die.
G (MPa) | h0 (μm-2) | r0 | m | K |
---|---|---|---|---|
29.484 | 0.75 | 2000 | 0.2 | 6030 |
Table 1 Parameters for the CA model used in the present work.
G (MPa) | h0 (μm-2) | r0 | m | K |
---|---|---|---|---|
29.484 | 0.75 | 2000 | 0.2 | 6030 |
Fig. 11. Simulated microstructures at different locations of the processed Al-Mg-Si alloy: (a), (b) and (c) single-pass CEEF (φ = 16 mm); (d), (e) and (f) double-pass CEEF (φ = 28 mm).
Fig. 12. Distribution of shear strain through the diameter CEEF process. Schematic illustration of the parabolic metal flow and apparent shear angle φi. Variation of shear strain in the different regions of the CEEF processed samples.
[1] |
J.H. Chen, E. Costan, M.Av. Huis, Q. Xu, H.W. Zandbergen, Science 312 (2006) 416-419.
PMID |
[2] |
I.P. Widiantara, H.W. Yang, M.J. Kim, Y.G. Ko, J. Mater. Sci. Technol. 35 (2019) 1439-1443.
DOI |
[3] |
L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Int. J. Plast. 46 (2013) 70-81.
DOI URL |
[4] |
C. Zhang, C. Wang, Q. Zhang, G. Zhao, L. Chen, J. Mater. Process. Technol. 270 (2019) 323-334.
DOI URL |
[5] |
Y. Weng, L. Ding, Z. Zhang, Z. Jia, B. Wen, Y. Liu, S. Muraishi, Y. Li, Q. Liu, Acta Mater. 180 (2019) 301-316.
DOI URL |
[6] |
Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, J.H. Chen, J. Mater. Sci. Technol. 41 (2020) 127-138.
DOI URL |
[7] |
X. Xuehong, Y. Deng, C. Shuiqing, G. Xiaobin, J. Mater. Res. Technol. 9 (2020) 230-241.
DOI URL |
[8] |
H. Chen, J. Lu, Y. Kong, K. Li, T. Yang, A. Meingast, M. Yang, Q. Lu, Y. Du, Acta Mater. 185 (2020) 193-203.
DOI URL |
[9] |
J. Hu, W. Zhang, D. Fu, J. Teng, H. Zhang, J. Mater. Res. Technol. 8 (2019) 5950-5960.
DOI URL |
[10] |
G. Lu, S. Nie, J. Wang, Y. Zhang, T. Wu, Y. Liu, C. Liu,, J. Mater. Sci. Technol. 40 (2020) 107-112.
DOI URL |
[11] |
M. Hockauf, L.W. Meyer, B. Zillmann, M. Hietschold, S. Schulze, L. Krüger, Mater. Sci. Eng. A 503 (2009) 167-171.
DOI URL |
[12] |
Z.T. Liu, B.Y. Wang, C. Wang, M. Zha, G.J. Liu, Z.Z. Yang, J.G. Wang, J.H. Li, H.Y. Wang, J. Mater. Sci. Technol. 41 (2020) 178-186.
DOI URL |
[13] | S. Beroual, Z. Boumerzoug, P. Paillard, Y. Borjon-Piron, J. Alloys. Compd, 784 (2019) 1026-1035. |
[14] | C. He, Y. Li, J. Li, G. Xu, Z. Wang, D. Wu, Mater. Sci. Eng. A 766 (2019), 138328. |
[15] |
I. Sadeghi, M.A. Wells, S. Esmaeili, Mater. Des. 128 (2017) 241-249.
DOI URL |
[16] | R.N. Lumley, Fundamentals of Aluminium Metallurgy Production, Processing and Applications by Roger Lumley, Woodhead Publishing, 2011. |
[17] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[18] | G.W. Bo, G. Wang, F.L. Jiang, C. Liu, R. Chen, H. Zhang Rare Metals (2020) http://dx.doi.org/10.1007/s12598-020-01382-01389. |
[19] |
X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Acta Mater. 98 (2015) 355-366.
DOI URL |
[20] |
N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Mater. Sci. Eng. A 528 (2011) 7537-7540.
DOI URL |
[21] |
N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, L.S. Toth, Mater. Sci. Eng. A 613 (2014) 357-364.
DOI URL |
[22] |
S. Amani, G. Faraji, H. Kazemi Mehrabadi, K. Abrinia, H. Ghanbari, J. Alloys. Compd. 723 (2017) 467-476.
DOI URL |
[23] |
X. Kong, H. Zhang, X. Ji, Mater. Sci. Eng. A 612 (2014) 131-139.
DOI URL |
[24] |
T.G. Zhou, Z.Y. Jiang, J.L. Wen, A.K. Tieu, J. Mater. Process. Technol. 177 (2006) 163-166.
DOI URL |
[25] |
Fr. Cao, Jl. Wen, H. Ding, Zd. Wang, Yl. Li, Rg. Guan, H. Hou, Trans. Nonferrous Met. Soc. China. 23 (2013) 201-207.
DOI URL |
[26] |
X. Ji, H. Zhang, S. Luo, F. Jiang, D. Fu, Mater. Sci. Eng. A 649 (2016) 128-134.
DOI URL |
[27] |
Y.F. Shen, R.G. Guan, Z.Y. Zhao, R.D.K. Misra, Acta Mater. 100 (2015) 247-255.
DOI URL |
[28] |
X.B. Yun, X. Chen, Y. Zhao, Z.X. Fan, B.Y. Song, Mater. Sci. Forum. 704-705 (2011) 196-202.
DOI URL |
[29] |
H. Zhang, F. Jiang, X. Shang, L. Li, Mater. Sci. Eng. A 571 (2013) 25-32.
DOI URL |
[30] |
L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu, G. Yang, Mater. Sci. Eng. A 627 (2015) 119-126.
DOI URL |
[31] |
J.F. Nie, Scripta Mater. 48 (2003) 1009-1015.
DOI URL |
[32] |
J.F. Nie, B.C. Muddle, Acta Mater. 56 (2008) 3490-3501.
DOI URL |
[33] | J.F. Nie, B.C. Muddle, J. Phase Equilibria Diffus. 19 (1998) 543-551. |
[34] |
Y. Pang, Q. Li, Int. J. Hydrog. Energy. 41 (2016) 18072-18087.
DOI URL |
[35] |
Y. Pang, Q. Li, Scripta Mater. 130 (2017) 223-228.
DOI URL |
[36] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy. 7 (2019) 58-71.
DOI URL |
[37] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[38] |
H.W. Zandbergen, S.J. Andersen, J. Jansen, Science 277 (1997) 1221-1225.
DOI URL |
[39] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[40] |
M. Vaseghi, H.S. Kim, Mater. Des. 36 (2012) 735-740.
DOI URL |
[41] |
J.J. Gracio, F. Barlat, E.F. Rauch, P.T. Jones, V.F. Neto, A.B. Lopes, Int. J. Plast. 20 (2004) 427-445.
DOI URL |
[42] |
D.S. Peng, B.Q. Yao, T.Y. Zuo, J. Mater. Process. Technol. 31 (1992) 85-92.
DOI URL |
[43] | F.J. Humpherys, M. Hatherly, Elsevier, 2004. |
[44] | C.H.J. Davies, Cellular Automaton Models of Recrystallization, in: ASM Handbook, Volume 22A, 2009, pp. 260-266. |
[45] |
A. LaasraouI, J.J. Jonas, Metall. Mater. Trans. A 22 (1991) 1545-1558.
DOI URL |
[46] |
R.C. Souza, E.S. Silva, A.M. Jorge, J.M. Cabrera, O. Balancin, Mater. Sci. Eng. A 582 (2013) 96-107.
DOI URL |
[47] |
S. Gourdet, F. Montheillet, Acta Mater. 51 (2003) 2685-2699.
DOI URL |
[48] |
H. Meckings, U.F. Kocks, Acta. Metall. 29 (1981) 1865-1875.
DOI URL |
[49] |
S. Gourdet, F. Montheillet, Acta Mater. 50 (2002) 2801-2812.
DOI URL |
[50] |
R.L. Goetz, V. Seetharaman, Scripta Mater. 38 (1998) 405-413.
DOI URL |
[51] |
H. Yang, C. Wu, H. Li, X. Fan, Sci. China Technol. Sci. 54 (2011) 2107-2118.
DOI URL |
[52] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207.
DOI URL |
[53] |
D.G. Morris, M.A. Muñoz-Morris, Acta Mater. 50 (2002) 4047-4060.
DOI URL |
[54] |
J. Hu, J. Teng, X. Ji, D. Fu, W. Zhang, H. Zhang, Mater. Sci. Eng. A 695 (2017) 35-44.
DOI URL |
[55] |
F. Samadpour, G. Faraji, P. Babaie, S.R. Bewsher, M. Mohammadpour, Mater. Sci. Eng. A 718 (2018) 412-417.
DOI URL |
[56] |
K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548-574.
DOI URL |
[57] |
O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Acta Mater. 56 (2008) 821-834.
DOI URL |
[58] |
S. Kaneko, K. Murakami, T. Sakai, Mater. Sci. Eng. A 500 (2009) 8-15.
DOI URL |
[59] |
B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorpf, Acta. Metall. 40 (1992) 205-219.
DOI URL |
[60] |
T. Sakai, A. Belyakov, H. Miura, Metall. Mater. Trans. A 39 (2008) 2206-2214.
DOI URL |
[61] | M.E. Kassner, S.R. Barrabes, Mater. Sci. Eng.A 410-411 (2005) 152-155. |
[62] |
L.D. Pari, W.Z. Misiolek, Acta Mater. 56 (2008) 6174-6185.
DOI URL |
[1] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[2] | Baoru Bian, Li Jin, Qiang Zheng, Fang Wang, Xiaohong Xu, Juan Du. Exchange-coupled nanocomposites with novel microstructure and enhanced remanence by a new approach [J]. J. Mater. Sci. Technol., 2021, 79(0): 118-122. |
[3] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[4] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[5] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[6] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[7] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[8] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[9] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[10] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[11] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[12] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[13] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[14] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[15] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||