J. Mater. Sci. Technol. ›› 2022, Vol. 98: 143-150.DOI: 10.1016/j.jmst.2021.05.009
• Research Article • Previous Articles Next Articles
Hua-Jun Chena,b, Yan-Ling Yanga,*(), Xin-Xin Zoua, Xiao-Lei Shic,d, Zhi-Gang Chenc,d,**(
)
Received:
2021-03-15
Revised:
2021-04-28
Accepted:
2021-05-06
Published:
2022-01-30
Online:
2022-01-25
Contact:
Yan-Ling Yang,Zhi-Gang Chen
About author:
*School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China. yangyanling@sust.edu.cn (Y.-L. Yang)Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis[J]. J. Mater. Sci. Technol., 2022, 98: 143-150.
Scheme 1. The sketch of photoelectrocatalytic process of hollow TiO2@CMSs/carbon-fiber vdW heterostructures and separation and transfer mechanism of photo-excited electron/hole.
Fig. 2. Morphology and photocatalysis of hollow TiO2 microspheres. (a-c) TEM analysis of hollow TiO2 microspheres synthesized with the mTi/mC of 5 (a), 10 (b) and 15 (c), respectively. (d) The photocatalytic efficiencies of hollow TiO2 microspheres with different thicknesses. (e) Synthetic process of hollow TiO2 microspheres with different thickness.
Fig. 3. (a) XRD analysis of synthetic products. (b) SEM image of hollow TiO2@CMSs. (c) TEM analysis of hollow TiO2@CMSs. (d) HRTEM analysis of hollow TiO2@CMSs. (e-h) Elemental mapping images of hollow TiO2@CMSs.
Fig. 4. Mechanism of electron delivery in hollow TiO2@CMSs. (a) Top view. (b) Side view. (c) Charge density difference of the hollow TiO2@CMSs. (d) The electron density difference between H2O and anatase TiO2 system. (e) The electron density difference between O2 and carbon shells system, in which green and yellow plot electron depletion zone and enrichment zone, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 5. (a) General view of hollow TiO2@CMSs/carbon-fiber vdW heterostructures. (b) Magnified FESEM image of hollow TiO2@CMSs/carbon-fiber vdW heterostructures. (c) The photographs of hollow TiO2@CMSs/carbon-fiber vdW heterostructures in bending states. (d) Graphical description for the assembly process of hollow TiO2@CMSs/carbon-fiber vdW heterostructures.
Fig. 6. The UV-vis DRS (a), photoluminescence spectra (b), and photocurrent (c) of hollow TiO2 microspheres, hollow TiO2@CMSs, and hollow TiO2@CMSs/carbon-fiber vdW heterostructures. The photocurrent under the irradiation of simulated-solar light in 0.1 mol/L Na2SO4 electrolyte, counter electrode of Pt wire, 0.2 V of bias voltage vs. SCE, working electrode of 25 mm × 50 mm × 1 mm dimension. (d) The photocatalytic efficiencies of hollow TiO2@CMSs/carbon-fiber vdW heterostructures in the presence of 20 mg∙L-1 2,4-DNP under simulated-solar light. (e) Schematic describing the migration of photo-excited electron/hole in hollow TiO2@CMSs/carbon-fiber vdW heterostructures in photocatalytic reactions.
Fig. 7. (a,b) The photocatalytic performance (a) and degradation kinetics (b) of hollow TiO2@CMSs/carbon-fiber vdW heterostructures for 2,4-DNP in photoelectrocatalytic, photocatalytic, and electrocatalytic process. (c) The UV-vis absorption spectra of 2,4-DNP at different photocatalytic time. (d) The photoelectrocatalytic stability of hollow TiO2@CMSs/carbon-fiber vdW heterostructures (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.).
[1] |
P. Zhou, Y. Chao, F. Lv, J. Lai, K. Wang, S. Guo, Sci. Bull. 65 (2020) 720-725.
DOI URL |
[2] |
J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114 (2010) 13118-13125.
DOI URL |
[3] |
Y. Si, Y. Zhang, L. Lu, S. Zhang, Y. Chen, J. Liu, H. Jin, S. Hou, K. Dai, W. Song, Appl. Catal. B Environ. 225 (2018) 512-518.
DOI URL |
[4] |
M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, Adv. Mater. 29 (2017) 1606550.
DOI URL |
[5] |
L. Zhang, R. Tong, S.E. Shirsath, Y. Yang, G. Dong, J. Mater. Chem. A 9 (2021) 5000-5006.
DOI URL |
[6] |
Y. Ide, M. Torii, T. Sano. J. Am. Chem. Soc. 135 (2013) 11784-11786.
DOI URL |
[7] |
J.M. Monteagudo,, N.A. Durã, I.S. MartãN, A.M. Acevedo, Chemosphere 168 (2017) 1447-1456.
DOI PMID |
[8] | K.K. Kefeni, B.B. Mamba, Sustain. Mater. Technol. 23 (2020) e00140. |
[9] |
X. Zou, Y. Yang, H. Chen, X.L. Shi, G. Suo, X. Ye, L. Zhang, X. Hou, L. Feng, Z.G. Chen, J. Colloid Interface Sci. 579 (2020) 463-469.
DOI URL |
[10] |
C. Liu, Y.M. Song, X.H. Yu, J.X. Liu, J.S. Deng, Phys. Status Solidi B 255 (2018) 1700616.
DOI URL |
[11] |
Y.Y. Gao, Z.X. Li, Y.H. Hao, J. Phys. Chem. C 121 (2017) 27963-27975.
DOI URL |
[12] |
W.J. Tseng, P.T. Lin. J. Eur. Ceram. Soc. 37 (2017) 5265-5272.
DOI URL |
[13] |
J.R. Chen, F.X. Qiu, Y. Zhang, J.Z. Liang, H.J. Zhu, S.S. Cao, Appl. Surf. Sci. 356 (2015) 553-560.
DOI URL |
[14] |
Y.H. Lin, H.T. Hsueh, C.W. Chang, H. Chu, Appl. Catal. B Environ. 199 (2016) 1-10.
DOI URL |
[15] | L.T.M. Ratova, P.J. Kelly, B. Ohtani, Sustain. Mater. Technol. 22 (2019) e00112. |
[16] |
X. Kong, H. Huang, Z. Li, Y. Liang, Z. Li, S. Zhu. J. Mater. Sci. Technol. 80 (2021) 171-178.
DOI URL |
[17] |
Q. Liu, J. Huang, H. Tang, X. Yu, J. Shen. J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[18] |
L. Han, B. Li, H. Wen, Y. Guo, Z. Lin. J. Mater. Sci. Technol. 70 (2021) 176-184.
DOI URL |
[19] |
N.G. Moustakas, A.G. Kontos, V. Likodimos, F. Katsaros, N. Boukos, D. Tsoutsou, A. Dimoulas, G.E. Romanos, D.D. Dionysiou, P. Falaras, Appl. Catal. B Environ. 130-131 (2013) 14-24.
DOI URL |
[20] |
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229-251.
DOI URL |
[21] |
T.F. Yeh, C.Y. Teng, S.J. Chen, H. Teng, Adv. Mater. 26 (2014) 3297-3303.
DOI URL |
[22] |
B. Weng, S. Liu, N. Zhang, Z.-.R. Tang, Y.J. Xu, J. Catal. 309 (2014) 146-155.
DOI URL |
[23] |
F. Ni, J. Qi, Q. Hao, B. Lyu, M.C. Luo, Y. Wang, F. Chen, S. Wang, C. Zhang, L. Epstein, X. Zhao, H. Wang, X. Zhang, C. Chen, L. Sun, D. Fu, Nat. Commun. 8 (2017) 15121.
DOI URL |
[24] |
E. Donath, G.B. Sukhorukov, F. Caruso, S.A. Davis, H. Möhwald, Angew. Chem. Int. Ed. 37 (2010) 2201-2205.
DOI URL |
[25] |
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114 (2014) 9987-10043.
DOI URL |
[26] |
P.V. Kamat, J. Phys. Chem. C 112 (2008) 18737-18753.
DOI URL |
[27] |
Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511-518.
DOI URL |
[28] |
B. James, Chem. Soc. Rev. 38 (2009) 185-196.
DOI URL |
[29] |
Z. Zhu, C.T. Kao, B.H. Tang, W.C. Chang, R.J. Wu, Ceram. Int. 42 (2016) 6749-6754.
DOI URL |
[30] |
G. Prieto, H. Tüysüz, N. Duyckaerts, J. Knossalla, G.H. Wang, F. Schüth, Chem. Rev. 116 (2016) 14056.
DOI URL |
[31] |
Y. Bi, Y. Yang, X.L. Shi, L. Feng, X. Hou, X. Ye, L. Zhang, G. Suo, S. Lu, Z.G. Chen. J. Mater. Sci. Technol. 83 (2021) 102-112.
DOI URL |
[32] |
X. Zou, Y. Yang, H. Chen, X.L. Shi, S. Song, Z.G. Chen, Mater. Des. 202 (2021) 109542.
DOI URL |
[33] |
Y. Liu, Y. Huang, X. Duan, Nature 567 (2019) 323-333.
DOI URL |
[34] |
A.K. Geim, I.V. Grigorieva, Nature 499 (2013) 419-425.
DOI URL |
[35] |
D.S. Bin, Z.X. Chi, Y. Li, K. Zhang, X. Yang, Y.G. Sun, J.Y. Piao, A.M. Cao, L.J. Wan. J. Am. Chem. Soc. 139 (2017) 13492.
DOI URL |
[36] |
J. C.Sancho-Garcıá, J.L. Brédas, J. Cornil, Chem. Phys. Lett. 377 (2003) 63-68.
DOI URL |
[37] | P. Wisesa, K. McGill, T. Mueller, Phys. Rev. B 93 (2016) 155109.155101-155109.155110. |
[38] |
J.B. Joo, M. Dahl, N. Li, F. Zaera, Y. Yin, Energy Environ. Sci. 6 (2013) 2082-2092.
DOI URL |
[39] |
L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6 (2014) 24-42.
DOI PMID |
[40] |
Y. Liu, X.Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W. Lou, Joule 2 (2018) 725-735.
DOI URL |
[41] |
Y. Yang, H. Chen, X. Zou, X.L. Shi, W.D. Liu, L. Feng, G. Suo, X. Hou, X. Ye, L. Zhang, C. Sun, H. Li, C. Wang, Z.G. Chen, ACS Appl. Mater. Interfaces 12 (2020) 24845-24854.
DOI URL |
[42] |
F. Pizzocchero, L. Gammelgaard, B.S. Jessen, J.M. Caridad, L. Wang, J. Hone, P. Bøggild, T.J. Booth, Nat. Commun. 7 (2016) 11894.
DOI PMID |
[43] |
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong, M. Chhowalla, Nature 568 (2019) 70-74.
DOI URL |
[44] |
W. Wang, P. Serp, P. Kalck, J.L. Faria, J. Mol. Catal. A Chem. 235 (2005) 194-199.
DOI URL |
[45] | J. Huo, Y. Chen, Y. Liu, J. Guo, L. Lu, W. Li, Y. Wang, H. Liu, Sustain. Mater. Technol. 22 (2019) e00117. |
[46] |
I. Mintsouli, N. Philippidis, I. Poulios, S. Sotiropoulos. J. Appl. Electrochem. 36 (2006) 463-474.
DOI URL |
[47] |
J. Georgieva, S. Sotiropoulos, S. Armyanov, N. Philippidis, I. Poulios. J. Appl. Electrochem. 41 (2011) 173-181.
DOI URL |
[48] |
I. Grčić, G., G. LiPuma, Environ. Sci. Technol. 47 (2013) 13702-13711.
DOI URL |
[49] |
H.J. Chen, W. Tian, W. Ding, Adsorpt. Sci. Technol. 36 (2018) 1100-1111.
DOI URL |
[50] | H.J. Chen, Y.L. Yang, M. Hong, J.G. Chen, G.Q. Suo, X.J. Hou, L. Feng, Z.G. Chen, Sustain. Mater. Technol. 21 (2019) e00105. |
[51] | Z. Zhang, F. Yu, L. Huang, J. Jiatieli, Y. Li, L. Song, N. Yu, D.D. Dionysiou, J. Haz- ard. Mater. 278 (2014) 152-157. |
[52] |
X. Zhang, S. Fujiwara, M. Fujii, Int. J. Thermophys. 21 (2000) 965-980.
DOI URL |
[53] |
T. Hirakawa, Y. Nosaka, Langmuir 18 (2002) 3247-3254.
DOI URL |
[1] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
[2] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[3] | Kaibin Li, Ming Li, Chang Xu, Zengyan Du, Jiawang Chen, Fengxia Zou, Chongwen Zou, Sichao Xu, Guanghai Li. A TiO2 nanotubes film with excellent antireflective and near-perfect self-cleaning performances [J]. J. Mater. Sci. Technol., 2021, 88(0): 11-20. |
[4] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[5] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[6] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
[7] | Bo-Wen Chen, De-Wei Ni, Chun-Jing Liao, You-Lin Jiang, Jun Lu, Yu-Sheng Ding, Hong-Da Wang, Shao-Ming Dong. Chemical reactions and thermal stress induced microstructure evolution in 2D-Cf/ZrB2-SiC composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 75-82. |
[8] | Yang Yu, Yu Zhao, Yu-Long Qiao, Yu Feng, Wei-Li Li, Wei-Dong Fei. Defect engineering of rutile TiO2 ceramics: Route to high voltage stability of colossal permittivity [J]. J. Mater. Sci. Technol., 2021, 84(0): 10-15. |
[9] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[10] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[11] | Jiabin Chen, Jing Zheng, Qianqian Huang, Gehuan Wang, Guangbin Ji. Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J]. J. Mater. Sci. Technol., 2021, 94(0): 239-246. |
[12] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[13] | Meng Zu, Xiaosong Zhou, Shengsen Zhang, Shangshu Qian, Dong-Sheng Li, Xianhu Liu, Shanqing Zhang. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices [J]. J. Mater. Sci. Technol., 2021, 78(0): 202-222. |
[14] | Liping Han, Bo Li, Hao Wen, Yuxi Guo, Zhan Lin. Photocatalytic degradation of mixed pollutants in aqueous wastewater using mesoporous 2D/2D TiO2(B)-BiOBr heterojunction [J]. J. Mater. Sci. Technol., 2021, 70(0): 175-184. |
[15] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||