J. Mater. Sci. Technol. ›› 2022, Vol. 98: 136-142.DOI: 10.1016/j.jmst.2021.05.022
• Research Article • Previous Articles Next Articles
Ting Hea,c, Jiajia Rua,b, Yutong Fenga,b, Dapeng Bic, Jiansheng Zhangc, Feng Gud, Chi Zhanga,b,*(), Jinhu Yanga,b,*(
)
Received:
2021-04-20
Revised:
2021-05-07
Accepted:
2021-05-15
Published:
2022-01-30
Online:
2022-01-25
Contact:
Chi Zhang,Jinhu Yang
About author:
yangjinhu@tongji.edu.cn (J.Yang).Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries[J]. J. Mater. Sci. Technol., 2022, 98: 136-142.
Fig. 2. (a, b) SEM images, (c, d) low-magnification TEM images, (e) HRTEM image and (f) STEM image and the corresponding elemental mappings of Mo, S, C elements of the MoS2/C hollow spheres. (g, h) SEM images and (i) TEM image of the S@MoS2/C composites.
Fig. 3. (a) XRD pattern of the S@MoS2/C composites. (b) N2 adsorption-desorption isotherms and the corresponding pore size distributions of the MoS2/C hollow spheres and the S@MoS2/C composites. (c, d) High-resolution XPS spectra of Mo 3d (c) and S 2p (d) of the MoS2/C hollow spheres and pure MoS2.
Fig. 4. (a) CV curves of the S@MoS2/C electrode for the first three cycles at a scan rate of 0.1 mV s-1. (b) Voltage profiles of the S@MoS2/C electrode at 0.1 C. (c) Rate performance of the S@MoS2/C and S/C electrodes. (d) Long-term cycling performance of the S@MoS2/C and S/C electrodes at 1 C.
Fig. 5. SEM images of the S@MoS2/C composites with different sulfur loading of (a) 67 wt%, (b) 75 wt% and (c) 80 wt%. (d) The cycling performance comparison of different S@MoS2/C electrodes at 0.2 C. (e) Nyquist plots and (f) real part of the impedance versus ω-1/2 of the typical S/C electrode and the other three S@MoS2/C electrodes.
Fig. 6. Photos of the disassembled cells with a) S@MoS2/C-67%, b) S@MoS2/C-75%, c) S@MoS2/C-80%, d) S/C-75% as the cathode materials after 200 cycles.
[1] |
A. Manthiram, Y.Z. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 114 (2014) 11751-11787.
DOI PMID |
[2] |
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605-5634.
DOI URL |
[3] |
X.L. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8 (2009) 500-506.
DOI URL |
[4] |
H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Adv. Energy Mater. 7 (2017) 1700260.
DOI URL |
[5] |
G.R. Li, S. Wang, Y.N. Zhang, M. Li, Z.W. Chen, J. Lu, Adv. Mater. 30 (2018) 1705590.
DOI URL |
[6] |
Z.S. Yu, M.L. Liu, D.Y. Guo, J.H. Wang, X. Chen, J. Li, H.L. Jin, Z. Yang, X.A. Chen, S. Wang, Angew. Chem. Int. Ed. 59 (2020) 6406-6411.
DOI URL |
[7] |
W.J. Chen, B.Q. Li, C.X. Zhao, M. Zhao, T.Q. Yuan, R.C. Sun, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 132 (2020) 10821-10834.
DOI URL |
[8] |
Y.V. Mikhaylik, J.R. Akridge. J. Electrochem. Soc. 151 (2004) A1969.
DOI URL |
[9] |
A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Chem. Rev. 114 (2014) 11751-11787.
DOI PMID |
[10] | T.F. Liu, H.L. Hu, X.F. Ding, H.D. Yuan, C.B. Jin, J.W. Nai, Y.J. Liu, Y. Wang, Y.H. Wan, X.Y. Tao, Energy Storage Mater. 30 (2020) 346-366. |
[11] |
Z. Li, Y. Jiang, L.X. Yuan, Z.Q. Yi, C. Wu, Y. Liu, P. Strasser, Y.H. Huang, ACS Nano 8 (2014) 9295-9303.
DOI URL |
[12] |
J.T. Lee, Y.Y. Zhao, S. Thieme, H. Kim, M. Oschatz, L. Borchardt, A. Magasinski, W.I. Cho, S. Kaskel, G. Yushin, Adv. Mater. 25 (2013) 4573-4579.
DOI URL |
[13] |
C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Angew. Chem. Int. Ed. 51 (2012) 9592-9595.
DOI URL |
[14] |
N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Angew. Chem. Int. Ed. 50 (2011) 5904-5908.
DOI URL |
[15] |
G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar, ACS Nano 7 (2013) 10920-10930.
DOI URL |
[16] |
L. Sun, M.Y. Li, Y. Jiang, W.B. Kong, K.L. Jiang, J.P. Wang, S.S. Fan, Nano Lett 14 (2014) 4044-4049.
DOI PMID |
[17] |
D. Gueon, J.T. Hwang, S.B. Yang, E. Cho, K. Sohn, D.-K. Yang, J.H. Moon, ACS Nano 12 (2018) 226-233.
DOI URL |
[18] |
J.M. Han, Q. Fu, B.J. Xi, X.Y. Ni, C.L. Yan, J.K. Feng, S.L. Xiong. J. Energy Chem. 52 (2021) 1-11.
DOI URL |
[19] |
G. He, B. Mandlmeier, J. Schuster, L.F. Nazar, T. Bein, Chem. Mater. 26 (2014) 3879-3886.
DOI URL |
[20] |
H. Xu, L. Qie, A. Manthiram, Nano Energy 26 (2016) 224-232.
DOI URL |
[21] |
C.B. Jin, W.K. Zhang, Z.Z. Zhuang, J.G. Wang, H. Huang, Y.P. Gan, Y. Xia, C. Liang, J. Zhang, X.Y. Tao, J. Mater. Chem. A 5 (2017) 632-640.
DOI URL |
[22] |
P. Vélez, M.L. Para, G.L. Luque, D. Barraco, E.P.M. Leiva, Electrochim. Acta 309 (2019) 402-414.
DOI URL |
[23] |
Q.P. Wu, Z.G. Yao, X.J. Zhou, J. Xu, F.H. Cao, C.L. Li, ACS Nano 14 (2020) 3365-3377.
DOI URL |
[24] | Z. Li, J.T. Zhang, B.Y. Guan, D. Wang, L.M. Liu, X.W.D. Lou, Nat. Commun. 7 (2016) 1-11. |
[25] | Z.Y. Wang, Y.F. Dong, H.J. Li, Z.B. Zhao, H.B. Wu, C. Hao, S.H. Liu, J.S. Qiu, X.W.D. Lou, Nat. Commun. 5 (2014) 1-8. |
[26] |
L. Ma, H.L. Zhuang, S. Wei, K.E. Hendrickson, M.S. Kim, G. Cohn, R.G. Hennig, L.A. Archer, ACS Nano 10 (2016) 1050-1059.
DOI URL |
[27] |
L.B. Ni, Z. Wu, G.J. Zhao, C.Y. Sun, C.Q. Zhou, X.X. Gong, G.W. Diao, Small 13 (2017) 1603466.
DOI URL |
[28] | X.L. Ji, S. Evers, R. Black, L.F. Nazar, Nat. Commun. 2 (2011) 1-7. |
[29] | Z.W. Seh, W.Y. Li, J.J. Cha, G.Y. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 4 (2013) 1-6. |
[30] |
X.P. Fang, X.W. Guo, Y. Mao, C.X. Hua, L.Y. Shen, Y.S. Hu, Z.X. Wang, F. Wu, L.Q. Chen, Chemistry-An Asian Journal 7 (2012) 1013-1017.
DOI URL |
[31] |
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen, D.W. Wang, X.B. Cheng, F. Wei, Q. Zhang, Nano Lett. 16 (2016) 519-527.
DOI PMID |
[32] |
J.J. Ru, T. He, B.J. Chen, Y.T. Feng, L.H. Zu, Z.J. Wang, Q.B. Zhang, T.Z. Hao, R.J. Meng, R.C. Che, C. Zhang, J. Yang, Angew. Chem. Int. Ed. 59 (2020) 14621-14627.
DOI URL |
[33] | Z.M. Wan, J. Shao, J.J. Yun, H.Y. Zheng, T. Gao, M. Shen, Q.T. Qu, H.H. Zheng, Small 10 (2014) 4 975-4 981. |
[34] |
X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed. 116 (2004) 607-611.
DOI URL |
[35] |
K. Chang, D.S. Geng, X.F. Li, J.L. Yang, Y.J. Tang, M. Cai, R.Y. Li, X.L. Sun, Adv. Energy Mater. 3 (2013) 839-844.
DOI URL |
[36] |
Z. Sun, Y.C. Yao, J. Wang, X.F. Song, P. Zhang, L.P. Zhao, L. Gao, J. Mater. Chem. A 4 (2016) 10425-10434.
DOI URL |
[37] |
L.Y. Hu, C.L. Dai, J.-M. Lim, Y.M. Chen, X. Lian, M.Q. Wang, Y. Li, P.H. Xiao, G. Henkelman, M.W. Xu, Chem. Sci. 9 (2018) 666-675.
DOI URL |
[38] | S.X. Jiang, M.F. Chen, X.Y. Wang, Z.Y. Wu, P. Zeng, C. Huang, Y. Wang, ACS Sus- tainable Chem. Eng. 6 (2018) 16828-16837. |
[39] |
Y. Zhang, T. He, G.L. Liu, L.H. Zu, J.H. Yang, Nanoscale 9 (2017) 10059-10066.
DOI PMID |
[40] |
Q.C. Pan, F.H. Zheng, Y.N. Wu, X. Ou, C.H. Yang, X.H. Xiong, M.L. Liu, J. Mater. Chem. A 6 (2018) 592-598.
DOI URL |
[41] |
J. Bai, B.C. Zhao, S. Lin, K.Z. Li, J.F. Zhou, J.M. Dai, X.B. Zhu, Y.P. Sun, Nanoscale 12 (2020) 1144-1154.
DOI URL |
[42] |
Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang, X.Y. Zhang, Y.J. Li, J.P. Lai, Z.H. Sun, Y. Yang, Y.G. Chao, C.J. Li, X.X. Ge, W.X. Yang, S.J. Guo, Adv. Funct. Mater. 28 (2018) 1707578.
DOI URL |
[43] |
F.G. Sun, H. Tang, B. Zhang, X.M. Li, C.Q. Yin, Z.H. Yue, L. Zhou, Y.S. Li, J.L. Shi, ACS Sustain. Chem. Eng. 6 (2018) 974-982.
DOI URL |
[44] |
P. Wang, B.J. Xi, M. Huang, W.H. Chen, J.K. Feng, S.L. Xiong, Adv. Energy Mater. 11 (2021) 2002893.
DOI URL |
[45] |
T. He, J.R. Feng, J.J. Ru, Y.T. Feng, R.Q. Lian, J.H. Yang, ACS Nano 13 (2018) 830-838.
DOI URL |
[46] |
M. Wild, L. O’neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. Offer, Energy Environ. Sci. 8 (2015) 3477-3494.
DOI URL |
[47] |
L.W. Ji, M.M. Rao, H.M. Zheng, L. Zhang, Y.C. Li, W.H. Duan, J.H. Guo, E.J. Cairns, Y.G. Zhang. J. Am. Chem. Soc. 133 (2011) 18522-18525.
DOI URL |
[48] |
K.X. Xiang, X.Y. Wen, J. Hu, S.C. Wang, H. Chen, ChemSusChem 12 (2019) 3602-3614.
DOI URL |
[49] |
M.M. Zhen, S.Q. Guo, B.X. Shen, ACS Sustain. Chem. Eng. 8 (2020) 13318-13327.
DOI URL |
[50] |
M.K. Liu, P. Zhang, Z.H. Qu, Y. Yan, C. Lai, T.X. Liu, S.Q. Zhang, Nat. Commun. 10 (2019) 1-11.
DOI URL |
[51] | Y.Z. Luo, X. Xu, Y.X. Zhang, Y.Q. Pi, C.H. Han, M.Y. Yan, Q.L. Wei, L.Q. Mai, Sci. Lett. 4 (2015) 130. |
[1] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
[2] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[3] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[4] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[5] | Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review [J]. J. Mater. Sci. Technol., 2021, 91(0): 168-177. |
[6] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[7] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[8] | Artem P.Tarutin, Yulia G.Lyagaeva, Aleksey I.Vylkov, Maxim Yu.Gorshkov, Gennady K.Vdovin, Dmitry A.Medvedev. Performance of Pr2(Ni,Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces [J]. J. Mater. Sci. Technol., 2021, 93(0): 157-168. |
[9] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
[10] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[11] | Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2021, 84(0): 124-132. |
[12] | Achmad Yanuar Maulana, Jungwook Song, Da Won Lee, Chae Eun Lee, Jongsik Kim. Enhanced electrochemical performance of graphitic carbon-wrapped spherical FeOF nanoparticles using maleopimaric acid as a cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 85(0): 184-193. |
[13] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
[14] | Anna Basa, Sławomir Wojtulewski, Beata Kalska-Szostko, Maciej Perkowski, Elena Gonzalo, Olga Chernyayeva, Alois Kuhn, Flaviano García-Alvarado. Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 107-115. |
[15] | Zhenya Luo, Xiao Wang, Weixin Lei, Pengtao Xia, Yong Pan. Confining sulfur in sandwich structure of bamboo charcoal and aluminum fluoride (BC@S@AlF3) as a long cycle performance cathode for Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 159-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||