J. Mater. Sci. Technol. ›› 2022, Vol. 98: 123-135.DOI: 10.1016/j.jmst.2021.04.046
• Research Article • Previous Articles Next Articles
R. Silvaa,c,*(), S. Vacchi G.a,c, L. Kugelmeier C.a,c, G.R. Santos I.a,c, A. Mendes Filho A.b, C.C. Magalhães D.a,c, R.M. Afonso C.a, L. Sordi V.a, A.D. Rovere C.a,*(
)
Received:
2021-01-14
Revised:
2021-04-07
Accepted:
2021-04-28
Published:
2022-01-30
Online:
2022-01-25
Contact:
R. Silva,A.D. Rovere C.
About author:
rovere@ufscar.br (C.A.D.Rovere).R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels[J]. J. Mater. Sci. Technol., 2022, 98: 123-135.
Material | C | S | N | Cr | Ni | Mn | Mo | Si | Cu | P |
---|---|---|---|---|---|---|---|---|---|---|
LDSS 2101 | 0.030 | 0.005 | 0.23 | 21.49 | 1.60 | 4.41 | 0.25 | 0.64 | 0.37 | 0.020 |
DSS 2205 | 0.025 | 0.005 | 0.19 | 22.61 | 5.83 | 1.51 | 3.26 | 0.44 | 0.20 | 0.022 |
Table 1 Chemical compositions of LDSS 2101 and DSS 2205 (wt.%).
Material | C | S | N | Cr | Ni | Mn | Mo | Si | Cu | P |
---|---|---|---|---|---|---|---|---|---|---|
LDSS 2101 | 0.030 | 0.005 | 0.23 | 21.49 | 1.60 | 4.41 | 0.25 | 0.64 | 0.37 | 0.020 |
DSS 2205 | 0.025 | 0.005 | 0.19 | 22.61 | 5.83 | 1.51 | 3.26 | 0.44 | 0.20 | 0.022 |
Fig. 2. BF-TEM representative images of the ferritic matrix of LDSS 2101 thermally aged for 2000 h (a) and annealed after aging for 2000 h (b). DSS 2205 thermally aged for 2000 h representative BF-TEM observations in (c) and annealed after aging for 2000 h in (d). Their corresponding selected area diffraction patterns (SADP) are next to each image.
Compositions (wt.%) | ||||
---|---|---|---|---|
Element | LDSS 2101 | DSS 2205 | ||
Ferrite | Austenite | Ferrite | Austenite | |
Fe | 68.14 | 69.19 | 64.83 | 64.83 |
Cr | 21.77 | 19.91 | 23.40 | 20.80 |
Ni | 1.30 | 1.92 | 4.43 | 6.57 |
Mo | 0.14 | 0.17 | 3.63 | 2.52 |
Mn | 4.56 | 5.01 | 1.60 | 1.81 |
Si | 0.77 | 0.71 | 0.44 | 0.39 |
Table 2 EDS chemical compositions of alloying elements in the ferrite and austenite phases of solution treated samples.
Compositions (wt.%) | ||||
---|---|---|---|---|
Element | LDSS 2101 | DSS 2205 | ||
Ferrite | Austenite | Ferrite | Austenite | |
Fe | 68.14 | 69.19 | 64.83 | 64.83 |
Cr | 21.77 | 19.91 | 23.40 | 20.80 |
Ni | 1.30 | 1.92 | 4.43 | 6.57 |
Mo | 0.14 | 0.17 | 3.63 | 2.52 |
Mn | 4.56 | 5.01 | 1.60 | 1.81 |
Si | 0.77 | 0.71 | 0.44 | 0.39 |
Fig. 3. DL-EPR curves of solution treated and annealed samples after aging at 475 °C for 2000 h: (a) LDSS 2101 and (c) DSS 2205; and their respective degrees of Cr depletion with aging time in (b) and (d).
Material | Temperature | Intermetallic | Volumetric fraction (%) | Chemical composition (wt.%) | |||
---|---|---|---|---|---|---|---|
Cr | Mo | C | N | ||||
LDSS 2101 | 475 °C | Carbide | 0.58 | 70.09 | 18.63 | 5.17 | — |
550 °C | 0.57 | 68.88 | 17.01 | 5.20 | — | ||
LDSS 2101 | 475 °C | Nitride | 2.66 | 78.36 | 5.11 | — | 11.32 |
550 °C | 2.68 | 80.85 | 3.99 | — | 11.38 | ||
DSS 2205 | 475 °C | Carbide | 0.50 | 69.68 | 20.28 | 5.14 | — |
550 °C | 0.49 | 67.87 | 20.01 | 5.13 | — | ||
DSS 2205 | 475 °C | Nitride | 2.23 | 68.93 | 20.07 | — | 10.65 |
550 °C | 2.23 | 71.92 | 16.86 | — | 10.77 |
Table 3 Chemical equilibrium composition and volumetric fraction of Cr carbides and nitrides predicted to form in the microstructure of LDSS 2101 and DSS 2205 during exposure at 475 °C and 550 °C, calculated by Thermo-Calc with TCFE7 database.
Material | Temperature | Intermetallic | Volumetric fraction (%) | Chemical composition (wt.%) | |||
---|---|---|---|---|---|---|---|
Cr | Mo | C | N | ||||
LDSS 2101 | 475 °C | Carbide | 0.58 | 70.09 | 18.63 | 5.17 | — |
550 °C | 0.57 | 68.88 | 17.01 | 5.20 | — | ||
LDSS 2101 | 475 °C | Nitride | 2.66 | 78.36 | 5.11 | — | 11.32 |
550 °C | 2.68 | 80.85 | 3.99 | — | 11.38 | ||
DSS 2205 | 475 °C | Carbide | 0.50 | 69.68 | 20.28 | 5.14 | — |
550 °C | 0.49 | 67.87 | 20.01 | 5.13 | — | ||
DSS 2205 | 475 °C | Nitride | 2.23 | 68.93 | 20.07 | — | 10.65 |
550 °C | 2.23 | 71.92 | 16.86 | — | 10.77 |
Fig. 5. SE-SEM micrographs of 2000 h aged sample of LDSS 2101 after etching with 10% oxalic acid solution, detailing the specific location from which the TEM foil was taken out (a). BF-TEM foil observation of the ferrite/austenite interface and HAADF-TEM image (b) and corresponding elemental mapping of the ferrite/austenite interface (c).
Fig. 6. BSE-SEM micrographs of samples after DL-EPR tests: (a) LDSS 2101 - thermally aged sample at 475 °C for 2000 h; (b) LDSS 2101 - annealed sample after aging at 475 °C for 2000 h; (c) DSS 2205 - thermally aged sample at 475 °C for 2000 h; (d) DSS 2205 - annealed sample after aging at 475 °C for 2000 h.
Fig. 9. BSE-SEM images of the surface aspect of solution treated (a, c) and aged samples at 475 °C for 2000 h (b, d) after anodic polarization tests of LDSS 2101 and DSS 2205, respectively.
Material | PREα | PREγ |
---|---|---|
LDSS 2101 | 19.17 | 20.86 |
DSS 2205 | 36.18 | 31.36 |
DSS 2205* | 35.28 | 31.51 |
Table 4 PRE-values calculated from ferrite and austenite phases of solution treated samples of LDSS 2101 and DSS 2205.
Material | PREα | PREγ |
---|---|---|
LDSS 2101 | 19.17 | 20.86 |
DSS 2205 | 36.18 | 31.36 |
DSS 2205* | 35.28 | 31.51 |
Fig. 10. Anodic polarization curves of solution treated and annealed samples after thermal aging at 475 °C for up to 2000 h of: (a) LDSS 2101 and (b) DSS 2205.
Fig. 12. BF-TEM images detailing spinodal decomposition and corresponding elemental mappings after aging at 475 °C for 2000 h: (a) LDSS 2101 and (b) DSS 2205.
Fig. 13. BSE-SEM images of the surface aspect of annealed samples post-aging for 2000 h after anodic polarization tests: (a) LDSS 2101 and (b) DSS 2205.
[1] |
J. Olsson, M. Snis, Desalination 205 (2007) 104-113, doi: 10.1016/j.desal.2006.02.051.
DOI URL |
[2] |
K. Chandra, R. Singhal, V. Kain, V.S. Raja, Mater. Sci. Eng. A. 527 (2010) 3904-3912, doi: 10.1016/j.msea.2010.02.069.
DOI URL |
[3] |
B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu, J. Li, Corros. Sci. 51 (2009) 2969-2975, doi: 10.1016/j.corsci.2009.08.015.
DOI URL |
[4] |
L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, J. Li, Mater. Charact. 60 (2009) 1522-1528, doi: 10.1016/j.matchar.2009.08.009.
DOI URL |
[5] |
Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He, J. Li, Corros. Sci. 93 (2015) 120-125, doi: 10.1016/j.corsci.2015.01.014.
DOI URL |
[6] |
C.A. DellaRovere, F.S. Santos, R. Silva, C.A.C. Souza, S.E. Kuri, Corros. Sci. 68 (2013) 84-90, doi: 10.1016/j.corsci.2012.10.038.
DOI URL |
[7] | R. Silva, L.F.S. Baroni, C.L. Kugelmeier, M. B. R.Silva, S.E. Kuri, C.A.D. Rovere, Cor-ros. Sci. 116 (2017) 66-73, doi: 10.1016/j.corsci.2016.12.014. |
[8] | R.N. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, 1st Ed., Woodhead Publishing, Cambridge, UK, 1997. |
[9] |
J.D. Tucker, M.K. Miller, G.A. Young, Acta Mater. 87 (2015) 15-24, doi: 10.1016/j.actamat.2014.12.012.
DOI URL |
[10] | W. Guo, D.A. Garfinkel, J.D. Tucker, D. Haley, G.A. Young, J.D. Poplawsky, Nan-otechnology 27 (2016) 254004, doi: 10.1088/0957-4484/27/25/254004. |
[11] | T.G. Lach, W.E. Frazier, J. Wang, A. Devaraj, T.S. Byun, Acta Mater. (2020), doi: 10.1016/j.actamat.2020.05.017. |
[12] |
K.L. Weng, H.R. Chen, J.R. Yang, Mater. Sci. Eng. A. 379 (2004) 119-132, doi: 10.1016/j.msea.2003.12.051.
DOI URL |
[13] |
C. Pareige, J. Emo, S. Saillet, C. Domain, P. Pareige. J. Nucl. Mater. 465 (2015) 383-389, doi: 10.1016/j.jnucmat.2015.06.017.
DOI URL |
[14] |
X. Liu, W. Lu, X. Zhang, Acta Mater 183 (2020) 51-63, doi: 10.1016/j.actamat.2019.11.008.
DOI URL |
[15] |
S. Mburu, R.P. Kolli, D.E. Perea, S.C. Schwarm, A. Eaton, J. Liu, S. Patel, J. Bar-trand, S. Ankem, Mater. Sci. Eng. A. 690 (2017) 365-377, doi: 10.1016/j.msea.2017.03.011.
DOI URL |
[16] |
J.D. Tucker, G.A. YoungJr., D.R. Eno, Solid State Phenom. 172-174 (2011) 331-337. doi: 10.4028/www.scientific.net/SSP.172-174.331.
DOI URL |
[17] | R. Silva, L.F.S. Baroni, M.B.R. Silva, C.R.M. Afonso, S.E. Kuri, C.A. Della Rovere, Mater. Charact. (2016), doi: 10.1016/j.matchar.2016.03.002. |
[18] |
J.J. Shiao, C.H. Tsai, J.J. Kai, J.H. Huang. J. Nucl. Mater. 217 (1994) 269-278, doi: 10.1016/0022-3115(94)90376-X.
DOI URL |
[19] |
F. Danoix, B. Deconihout, A. Bostel, P. Auger, Surf. Sci. 266 (1992) 409-415, doi: 10.1016/0039-6028(92)91054-F.
DOI URL |
[20] |
J.E. Brown, G.D.W. Smith, Surf. Sci. 246 (1991) 285-291, doi: 10.1016/0039-6028(91)90428-U.
DOI URL |
[21] |
F. Danoix, P. Auger, Mater. Charact. 44 (2000) 177-201, doi: 10.1016/S1044-5803(99)00048-0.
DOI URL |
[22] |
M.K. Miller, I.M. Anderson, J. Bentley, K.F. Russell, Appl. Surf. Sci. 94-95 (1996) 391-397, doi: 10.1016/0169-4332(95)00402-5.
DOI URL |
[23] |
K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R Reports. 65 (2009) 39-104, doi: 10.1016/j.mser.2009.03.001.
DOI URL |
[24] |
Y. Chen, X. Dai, X. Chen, B. Yang, Mater. Charact. 149 (2019) 74-81, doi: 10.1016/j.matchar.2019.01.012.
DOI URL |
[25] |
F. Danoix, P. Auger, D. Blavette, Surf. Sci. 266 (1992) 364-369, doi: 10.1016/ 0039-6028(92)91047-F.
DOI URL |
[26] |
S.L. Li, H.L. Zhang, Y.L. Wang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Mater. Sci. Eng. A. 564 (2013) 85-91, doi: 10.1016/j.msea.2012.11.046.
DOI URL |
[27] |
H.M. Chung, T.R. Leax, Mater. Sci. Technol. 6 (1990) 249-262, doi: 10.1179/026708390790191170.
DOI URL |
[28] |
R. Badyka, G. Monnet, S. Saillet, C. Domain, C. Pareige. J. Nucl. Mater. 514 (2019) 266-275, doi: 10.1016/j.jnucmat.2018.12.002.
DOI URL |
[29] |
Y. Chen, B. Chen, F. Dong, B. Yang, S. Li, X. Yu, Eng. Fail. Anal. 83 (2018) 1-8, doi: 10.1016/j.engfailanal.2017.09.005.
DOI URL |
[30] |
Y. Chen, B. Yang, Y. Zhou, Y. Wu, H. Zhu, Acta Mater 197 (2020) 172-183, doi: 10.1016/j.actamat.2020.07.046.
DOI URL |
[31] |
C.-.J. Park, H.S. Kwon, Corros. Sci. 44 (2002) 2817-2830, doi: 10.1016/S0010-938X(02)00079-3.
DOI URL |
[32] |
C.-.J. Park, H.-.S. Kwon, M.M. Lohrengel, Mater. Sci. Eng. A. 372 (2004) 180-185, doi: 10.1016/j.msea.2003.12.013.
DOI URL |
[33] |
F. Zanotto, V. Grassi, A. Balbo, C. Monticelli, C. Melandri, F. Zucchi, Corros. Sci. 130 (2018) 22-30, doi: 10.1016/j.corsci.2017.10.024.
DOI URL |
[34] |
F. Zanotto, V. Grassi, M. Merlin, A. Balbo, F. Zucchi, Corros. Sci. 94 (2015) 38-47, doi: 10.1016/j.corsci.2015.01.035.
DOI URL |
[35] |
J.-.Y. Maetz, S. Cazottes, C. Verdu, F. Danoix, X. Kléber, Microsc. Microanal. 22 (2016) 463-473, doi: 10.1017/S1431927616000167.
DOI URL |
[36] | J.-.O. Andersson, E. Alfonsson, C. Canderyd, H.L. Groth, Proc Stainl. Steel World Conf. (2010) 1-23. |
[37] | S. Cazottes, V. Massardier, R. Danoix, D. Rolland, S. Cissé, F. Danoix, Materialia,(2020) 100854, doi: 10.1016/j.mtla.2020.100854. |
[38] |
F. Danoix, P. Bas, J.P. Massoud, M. Guttmann, P. Auger, Appl. Surf. Sci. 67 (1993) 348-355, doi: 10.1016/0169-4332(93)90337-B.
DOI URL |
[39] |
F. Iacoviello, F. Casari, S. Gialanella, Corros. Sci. 47 (2005) 909-922, doi: 10. 1016/j.corsci.2004.06.012.
DOI URL |
[40] |
A.P. Majidi, M.A. Streicher, Corrosion 40 (1984) 584-593, doi: 10.5006/1.3581921.
DOI URL |
[41] |
V. Shamanth, K.S. Ravishankar, Results Phys 5 (2015) 297-303, doi: 10.1016/j.rinp.2015.10.004.
DOI URL |
[42] | A. Mateo, J.L. Palomino, N. Salan, L. Llanes, M. Anglada, ECF 11 -Mech. Mech. Damage Fail 1 (1996). |
[43] | Standard ASTM, ASTM, International, West Conshohocken (2018) G61-G86, doi: 10.1520/G0061-86R18.2. |
[44] |
R. Badyka, S. Saillet, C. Domain, C. Pareige. J. Nucl. Mater. 542 (2020) 152530, doi: 10.1016/j.jnucmat.2020.152530.
DOI URL |
[45] |
J.W. Gahn, Acta Metall 11 (1963) 1275-1282, doi: 10.1016/0001-6160(63)90022-1.
DOI URL |
[46] | G.E. Dieter, New York, 1986. |
[47] |
S.C. Schwarm, S. Mburu, R.P. Kolli, D.E. Perea, S. Ankem, Mater. Sci. Eng. A. 720 (2018) 130-139, doi: 10.1016/j.msea.2018.02.058.
DOI URL |
[48] | E.B. Melo, R. Magnabosco,. (2015) 1701. doi: 10.5006/1701. |
[49] |
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, R. Arrabal, Acta Mater 55 (2007) 2239-2251, doi: 10.1016/j.actamat.2006.11.021.
DOI URL |
[50] |
T. Steiner, E.J. Mittemeijer. J. Mater. Eng. Perform. 25 (2016) 2091-2102, doi: 10.1007/s11665-016-2048-x.
DOI URL |
[51] | F.G. Wasserman, S.S.M. Tavares, J.M. Pardal, F.B. Mainier, R.A. Faria, C.S. Nunes, REM 66 (2) (2013) 193-200. |
[52] |
G.S. Frankel. J. Electrochem. Soc. 145 (1998) 2186, doi: 10.1149/1.1838615.
DOI URL |
[53] |
K. Chan, S. Tjong, Materials (Basel) 7 (2014) 5268-5304, doi: 10.3390/ma7075268.
DOI URL |
[54] |
Z. Wei, J. Laizhu, H. Jincheng, S. Hongmei, Mater. Charact. 60 (2009) 50-55, doi: 10.1016/j.matchar.2008.07.002.
DOI URL |
[55] |
L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, J. Li, Electrochim. Acta. 54 (2009) 5387-5392, doi: 10.1016/j.electacta.2009.04.023.
DOI URL |
[56] | A.U. Malik, N.A. Siddiqi, S. Ahmad, I.N. Andijani, Corros. Sci. 37 (1995) 1521-1535, doi: 10.1016/0010-938X(95)00043-J. |
[57] |
Y. Jiang, T. Sun, J. Li, J. Xu. J. Mater. Sci. Technol. 30 (2014) 179-183, doi: 10.1016/j.jmst.2013.12.018.
DOI URL |
[58] |
Y. Guo, T. Sun, J. Hu, Y. Jiang, L. Jiang, J. Li. J. Alloys Compd. 658 (2016) 1031-1040, doi: 10.1016/j.jallcom.2015.10.218.
DOI URL |
[59] |
Z. Zhang, H. Zhang, H. Zhao, J. Li, Corros. Sci. 103 (2016) 189-195, doi: 10.1016/j.corsci.2015.11.018.
DOI URL |
[60] | D.-.W. Jiang, C.-.S. Ge, X.-.J. Zhao, J. Li, L.-.L. Shi, X.-.S. Xiao, J. Iron Steel Res. Int. 19 (2012) 50-56, doi: 10.1016/S1006-706X(12)60059-4. |
[61] |
H. Tian, X. Cheng, Y. Wang, C. Dong, X. Li, Electrochim. Acta. 267 (2018) 255-268, doi: 10.1016/j.electacta.2018.02.082.
DOI URL |
[62] | X.G. Zhang, in: Uhlig’s Corros, Handb. Third Ed, 2011, pp. 123-143, doi: 10.1002/9780470872864.ch10. |
[63] |
C. Örnek, D.L. Engelberg, Corros. Sci. 99 (2015) 164-171, doi: 10.1016/j.corsci.2015.06.035.
DOI URL |
[1] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[2] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[3] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[4] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[5] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[6] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
[7] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[8] | Chunhui Liu, Zhuangzhuang Feng, Peipei Ma, Yihui Zhou, Guohui Li, Lihua Zhan. Reversion of natural ageing and restoration of quick bake-hardening response in Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2021, 95(0): 88-94. |
[9] | Peng-Cheng Zhao, Guang-Jian Yuan, Run-Zi Wang, Bo Guan, Yun-Fei Jia, Xian-Cheng Zhang, Shan-Tung Tu. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF [J]. J. Mater. Sci. Technol., 2021, 83(0): 196-207. |
[10] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[11] | Peijian Shi, Yi Li, Yuebo Wen, Yiqi Li, Yan Wang, Weili Ren, Tianxiang Zheng, Yifeng Guo, Long Hou, Zhe Shen, Ying Jiang, Jianchao Peng, Pengfei Hu, Ningning Liang, Qingdong Liu, Peter K. Liaw, Yunbo Zhong. A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening [J]. J. Mater. Sci. Technol., 2021, 89(0): 88-96. |
[12] | Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding [J]. J. Mater. Sci. Technol., 2021, 84(0): 230-238. |
[13] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
[14] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[15] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||