J. Mater. Sci. Technol. ›› 2022, Vol. 98: 118-122.DOI: 10.1016/j.jmst.2021.04.060
• Letter • Previous Articles Next Articles
Dong Wanga, Xu Lua,*(), Meichao Linb, Di Wana, Zhiming Lic,d, Jianying Heb, Roy Johnsena
Revised:
2021-04-24
Published:
2022-01-30
Online:
2022-01-25
Contact:
Xu Lu
About author:
*E-mail address: lxu.u@ntnu.no (X. Lu)Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation[J]. J. Mater. Sci. Technol., 2022, 98: 118-122.
Fig. 1. Load-displacement curves in (a) air, under the hydrogen charging conditions at (b) H1 (-1300 mV), (c) H2 (-1400 mV), (d) H3 (-1500 mV), and (e) anodic hydrogen discharging condition. The surface quality before and after hydrogen charging are shown as the insets in (a) and (e), respectively. (f) shows the pop-in width Δh and pop-in load p under different hydrogen charging conditions.
Fig. 2. Relation between pop-in width and pop-in load under different hydrogen charging conditions. Dashed line shows an example of the major hydrogen effect on pop-in width.
Fig. 3. (a) Stored elastic energy for dislocation nucleation. (b) The schematic of prismatic dislocation loops beneath the indenter generated during pop-in. (c) Distribution of maximum shear stress beneath the indenter according to Hertz-Huber model. The plane defines 98% of the maximum shear stress.
[1] | S. Lynch, Corros. Rev. 30 (2012) 105-123. |
[2] |
A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Acta Mater. 60 (2012) 6814-6828.
DOI URL |
[3] |
M.B. Djukic, V. Sijacki Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Eng. Failure Anal. 58 (2015) 4 85-4 98.
DOI URL |
[4] | B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, X. Zhang, Acta Metall. Sin. (Engl. Lett 34 (2021) 741-754. |
[5] | D. Wang, X. Lu, D. Wan, X. Guo, R. Johnsen, Mater. Sci. Eng. A 20 (2020) 140638. |
[6] |
D. Wan, Y. Ma, B. Sun, S.M.J. Razavi, D. Wang, X. Lu, W. Song, J. Mater. Sci. Technol. 85 (2021) 30-43.
DOI |
[7] |
H. Yu, A. Cocks, E. Tarleton, J. Mech. Phys. Solids 123 (2019) 41-60.
DOI URL |
[8] |
I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A 46 (2015) 2323-2341.
DOI URL |
[9] |
D.G. Xie, S.Z. Li, M. Li, Z.J. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, Z.W. Shan, Nat. Commun. 7 (2016) 13341.
DOI URL |
[10] |
X. Lu, D. Wang, D. Wan, Z.B. Zhang, N. Kheradmand, A. Barnoush, Acta Mater. 179 (2019) 36-48.
DOI |
[11] |
R. Kirchheim, Scr. Mater. 62 (2010) 67-70.
DOI URL |
[12] |
X. Lu, Y. Ma, D. Wang, Mater. Sci. Eng. A 792 (2020) 139785.
DOI URL |
[13] |
P. Ferreira, I. Robertson, H. Birnbaum, Acta Mater. 46 (1998) 1749-1757.
DOI URL |
[14] |
J. Song, W.A. Curtin, Acta Mater. 68 (2014) 61-69.
DOI URL |
[15] |
M.-.Y. Seok, I.-.C. Choi, J. Moon, S. Kim, U. Ramamurty, J.-.I. Jang, Scr. Mater. 87 (2014) 49-52.
DOI URL |
[16] |
S. Shim, H. Bei, E.P. George, G.M. Pharr, Scr. Mater. 59 (2008) 1095-1098.
DOI URL |
[17] |
A. Barnoush, M.T. Welsch, H. Vehoff, Scr. Mater. 63 (2010) 465-468.
DOI URL |
[18] |
G. Hachet, A. Oudriss, A. Barnoush, T. Hajilou, D. Wang, A. Metsue, X. Feaugas, Mater. Sci. Eng. A 803 (2020) 140480.
DOI URL |
[19] |
D. Wang, X. Lu, D. Wan, Z. Li, A. Barnoush, Scr. Mater. 173 (2019) 56-60.
DOI URL |
[20] |
A. Barnoush, H. Vehoff, Acta Mater 58 (2010) 5274-5285.
DOI URL |
[21] |
D. Wang, X. Lu, Y. Deng, X. Guo, A. Barnoush, Acta Mater. 166 (2019) 618-629.
DOI URL |
[22] |
D. Wang, X. Lu, Y. Deng, D. Wan, Z. Li, A. Barnoush, Intermetallics 114 (2019) 106605.
DOI URL |
[23] |
G. Stenerud, R. Johnsen, J.S. Olsen, J.Y. He, A. Barnoush, Int. J. Hydrog. Energy 42 (2017) 15933-15942.
DOI URL |
[24] |
A. Bamoush, N. Kheradmand, T. Hajilou, Scr. Mater. 108 (2015) 76-79.
DOI URL |
[25] |
X. Lu, D. Wang. J. Mater. Sci. Technol. 67 (2021) 243-253.
DOI URL |
[26] |
X. Lu, D. Wang, Z. Li, Y. Deng, A. Barnoush, Mater. Sci. Eng. A 762 (2019) 138114.
DOI URL |
[27] | K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1987. |
[28] |
F. Pöhl, Sci. Rep. 9 (2019) 15350.
DOI URL |
[29] |
I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Scr. Mater. 61 (2009) 737-740.
DOI URL |
[30] |
Y. Zhao, J.-.M. Park, J.-i. Jang, U. Ramamurty, Acta Mater. 202 (2021) 124-134.
DOI URL |
[31] |
A. Barnoush, Acta Mater 60 (2012) 1268-1277.
DOI URL |
[32] |
H. Bei, Z.P. Lu, E.P. George, Phys. Rev. Lett. 93 (2004) 125504.
PMID |
[33] |
J.R. Morris, H. Bei, G.M. Pharr, E.P. George, Phys. Rev. Lett. 106 (2011) 165502.
PMID |
[34] |
D. Wu, J.R. Morris, T.G. Nieh, Scr. Mater. 94 (2015) 52-55.
DOI URL |
[35] |
K. Gan, D. Yan, S. Zhu, Z. Li, Acta Mater. 206 (2021) 116633.
DOI URL |
[36] | C. Müller, M. Zamanzade, C. Motz, Micromachines (Basel) 10 (2019) 114. |
[37] |
C. Shin, S. Shim. J. Mater. Res. 27 (2012) 2161-2166.
DOI URL |
[38] |
A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, S. Suresh, Acta Mater. 48 (2000) 2277-2295.
DOI URL |
[39] |
A. Barnoush, M. Asgari, R. Johnsen, Scr. Mater. 66 (2012) 414-417.
DOI URL |
[40] |
Y. Shibutani, T. Tsuru, A. Koyama, Acta Mater. 55 (2007) 1813-1822.
DOI URL |
[41] |
K. Zhao, J. He, A.E. Mayer, Z. Zhang, Acta Mater. 148 (2018) 18-27.
DOI URL |
[42] |
A. Heczel, M. Kawasaki, J.L. Lábár, J.-i. Jang, T.G. Langdon, J. Gubicza, J. Alloys Compd. 711 (2017) 143-154.
DOI URL |
[43] |
L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, N.G. Jones, Acta Mater. 122 (2017) 11-18.
DOI URL |
[44] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[45] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[46] | P.M. Anderson, J.P. Hirth, J. Lothe, Theory of Dislocations, 3rd ed., Cambridge University Press, Cambridge, 2017. |
[47] |
M.T. Huber, Ann. Phys. 319 (1904) 153-163.
DOI URL |
[48] |
W.D. Nix, H.J. Gao, J. Mech. Phys. Solids 46 (1998) 411-425.
DOI URL |
[49] | D. Hull, D.J. Bacon, Elsevier Science, 2011. |
[50] | H.P. Ritzema, Wageningen, 2006. |
[51] | A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953. |
[52] |
Y. Zhu, Z. Li, M. Huang, H. Fan, Int. J. Plast. 92 (2017) 31-44.
DOI URL |
[1] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[2] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[3] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[4] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[5] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[6] | MinJe Kang, GillSang Han, InSun Cho. Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds [J]. J. Mater. Sci. Technol., 2022, 98(0): 26-32. |
[7] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
[8] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[9] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[10] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[11] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[12] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[13] | Benqi Jiao, Qinyang Zhao, Yongqing Zhao, Laiping Li, Zhongwu Hu, Xuanqiao Gao, Wen Zhang, Jianfeng Li. The relationship between slip behavior and dislocation arrangement for large-size Mo-3Nb single crystal at room temperature [J]. J. Mater. Sci. Technol., 2021, 92(0): 208-213. |
[14] | Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning [J]. J. Mater. Sci. Technol., 2021, 92(0): 31-39. |
[15] | Wanshun Xia, Xinbao Zhao, Liang Yue, Quanzhao Yue, Jiangwei Wang, Qingqing Ding, Hongbin Bei, Ze Zhang. Inconsistent creep between dendrite core and interdendritic region under different degrees of elemental inhomogeneity in nickel-based single crystal superalloys✩ [J]. J. Mater. Sci. Technol., 2021, 92(0): 88-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||