J. Mater. Sci. Technol. ›› 2022, Vol. 99: 215-222.DOI: 10.1016/j.jmst.2021.06.004
• Research article • Previous Articles Next Articles
Wangwang Qiana,b, Zhe Chena,c, Jinfeng Zhangd,*(), Lichang Yina,b,d,*(
)
Received:
2021-04-08
Revised:
2021-04-08
Accepted:
2021-04-08
Published:
2022-02-10
Online:
2022-02-09
Contact:
Jinfeng Zhang,Lichang Yin
About author:
lcyin@imr.ac.cn (L. Yin).Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction[J]. J. Mater. Sci. Technol., 2022, 99: 215-222.
Fig. 1. (a) Top and side views of the 4 × 4 supercell of pristine MoSi2N4 with a hydrogen atom adsorption. Three possible sites for atomic hydrogen adsorption on monolayer MoSi2N4, including the top site of surface Si atom, the top site of surface N atom and the center of surface N-Si six-member ring, are labelled by numbers 1, 2 and 3, respectively. (b) Top and side views of the 4 × 4 supercell of defective MoSi2N4 with a surface NV. The surface NV is highlighted by red dotted circle and three Si atoms around the surface NV is marked by three green dashed circles. (c) Top and side views of one hydrogen atom adsorption on the 4 × 4 supercell of defective MoSi2N4 with one surface NV. The Mo, Si, N and H atoms are represented by purple, blue, grey and red balls, respectively.
Fig. 2. (a) The formation energy of surface NV in defective MoSi2N4 with different NV concentrations under the N-rich condition. (b) The formation energies for surface NV (red line) and inner NV (blue line) as a function of the chemical potential of N.
Supercell | CNV | ΔEH*(eV) | ΔZPE-TΔS(eV) | ΔGH*(eV) | Eg(eV) |
---|---|---|---|---|---|
2 × 2 | 12.5% | 0.37 | 0.23 | 0.60 | ‒ |
2 × 3 | 8.3% | -0.07 | 0.24 | 0.17 | ‒ |
3 × 3 | 5.6% | -0.18 | 0.24 | 0.06 | 0.38 |
3 × 4 | 4.2% | -0.23 | 0.24 | 0.01 | 0.66 |
4 × 4 | 3.1% | -0.24 | 0.24 | 0.00 | 0.74 |
5 × 5 | 2.0% | -0.27 | 0.24 | -0.03 | 0.82 |
Table 1 The adsorption energies (ΔEH*), the ΔZPE-TΔS term, the Gibbs free energies (ΔGH*) of atomic hydrogen adsorption on monolayer MoSi2N4 with different surface NV concentrations (CNV), and the band gap (Eg) of corresponding defective MoSi2N4. The defective MoSi2N4 with CNV of 12.5% and 8.3% are metallic.
Supercell | CNV | ΔEH*(eV) | ΔZPE-TΔS(eV) | ΔGH*(eV) | Eg(eV) |
---|---|---|---|---|---|
2 × 2 | 12.5% | 0.37 | 0.23 | 0.60 | ‒ |
2 × 3 | 8.3% | -0.07 | 0.24 | 0.17 | ‒ |
3 × 3 | 5.6% | -0.18 | 0.24 | 0.06 | 0.38 |
3 × 4 | 4.2% | -0.23 | 0.24 | 0.01 | 0.66 |
4 × 4 | 3.1% | -0.24 | 0.24 | 0.00 | 0.74 |
5 × 5 | 2.0% | -0.27 | 0.24 | -0.03 | 0.82 |
Fig. 3. The free energy diagram of (a) the HER on defective MoSi2N4 with different NV concentrations and (b) the HER on defective MoSi2N4 with 3.1% NV concentration (4 × 4 supercells) at different hydrogen coverages.
Fig. 4. The spin-polarized band structures of (a) the pristine MoSi2N4, (b?e) the defective MoSi2N4 with CNV of 12.5%, 5.6%, 3.1% and 2.0%, and (f) the defective MoSi2N4 with CNV of 3.1% after one hydrogen adsorption. The corresponding band gap values of semiconducting systems are presented. The Fermi levels are set to be 0 eV and denoted by black dashed lines for all cases.
Fig. 5. The spin-polarized DOS plots for (a) the pristine MoSi2N4, (b?e) the defective MoSi2N4 with CNV of 12.5%, 5.6%, 3.1% and 2.0%, and (f) the defective MoSi2N4 with CNV of 3.1% after one hydrogen adsorption. The Fermi levels are set to be 0 eV and denoted by black dotted lines for all cases.
Fig. 6. LDOS plots of three Si atoms around the surface NV in defective MoSi2N4 with CNV of (a) 12.5%, (b) 5.6%, (c) 3.1% and (d) 2.0%. The Fermi levels denoted by black dotted lines are set to be 0 eV. The Si-3p band centers are indicated by red dotted lines and the corresponding energies are also given.
Fig. 7. The relationship between the Si-3p band center (εSi-3p) and the Gibbs free energy of atomic hydrogen adsorption (ΔGH*) on defective MoSi2N4 with different CNV. After fitting, a linear function between εSi-3p and ΔGH* can be obtained and is also presented.
[1] |
S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
DOI URL |
[2] |
J.A. Turner, Science 305 (2004) 972-974.
PMID |
[3] |
D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Nano Lett. 18 (2018) 3943-3949.
DOI URL |
[4] |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, J. Electrochem. Soc. 152 (2005) J23-J26.
DOI URL |
[5] |
Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[6] |
E. Skulason, G. Karlberg, J. Rossmeisl, T. Bligaard, J.P. Greeley, H. Jonsson, J.K. Nørskov, Phys. Chem. Chem. Phys. 9 (2007) 3241-3250.
DOI URL |
[7] |
M.A. Abbas, J.H. Bang, Chem. Mater. 27 (2015) 7218-7235.
DOI URL |
[8] |
L. Reading-Ikkanda, Nature 527 (2015) S218-S219.
DOI URL |
[9] |
T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (2007) 100-102.
PMID |
[10] |
Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, J. Am. Chem. Soc. 133 (2011) 7296-7299.
DOI URL |
[11] |
D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B.Alves , T.Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12 (2013) 850-855.
DOI URL |
[12] | Y.M. Xu, X.Q. Zhang, Z.H. Chen, K. Kempa, X. Wang, L.L. Shui, J. Mater. Sci. Tech- nol. 68 (2021) 1-7. |
[13] |
M.H. Xiong, J.T. Yan, B. Chai, G.Z. Fan, G.S. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
[14] |
J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Adv. Mater. 25 (2013) 5807.
DOI URL |
[15] |
Q. Tang, D.E. Jiang, ACS Catal. 6 (2016) 4953-4961.
DOI URL |
[16] |
G.P. Gao, A.P. O’Mullane, A.J. Du, ACS Catal. 7 (2017) 494-500.
DOI URL |
[17] |
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, ACS Energy Lett. 1 (2016) 589-594.
DOI URL |
[18] |
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. Rummeli, Chem. Soc. Rev. 48 (2019) 72-133.
DOI URL |
[19] |
E.X. Han, Y.Y. Li, Q.H. Wang, W.Q. Huang, L. Luo, W.Y. Hu, G.F. Huang, J. Mater. Sci. Technol. 35 (2019) 2288-2296.
DOI URL |
[20] |
H.L. Fei, J.C. Dong, M.J. Arellano-Jimenez, G.L. Ye, N.D. Kim, E.L.G. Samuel, Z.W. Peng, Z. Zhu, F. Qin, J.M. Bao, M.J. Yacaman, P.M. Ajayan, D.L. Chen, J.M. Tour, Nat. Commun. 6 (2015) 8668.
DOI URL |
[21] |
R. Akilimali, G.S. Selopal, D. Benetti, M. Mohammadnezhad, H.G. Zhao, Z.M. Wang, B. Stansfield, F. Rosei, Catal. Today 340 (2020) 161-169.
DOI URL |
[22] |
Z.L. Jin, L.J. Zhang, J. Mater. Sci. Technol. 49 (2020) 144-156.
DOI URL |
[23] |
Y.L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M.L. Chen, D.M. Sun, X.Q. Chen, H.M. Cheng, W. Ren, Science 369 (2020) 670-674.
DOI URL |
[24] |
S. Li, W.K. Wu, X.L. Feng, S. Guan, W.X. Feng, Y.G. Yao, S.A. Yang, Phys. Rev. B 102 (2020) 235435.
DOI URL |
[25] |
J. Hafner, J. Comput. Chem. 29 (2008) 2044-2078.
DOI URL |
[26] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
PMID |
[27] |
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[28] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[29] |
B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59 (1999) 7413-7421.
DOI URL |
[30] |
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456-1465.
DOI URL |
[31] | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Comput. Chem. 132 (2010) 154104. |
[32] |
A. Roudgar, A. Groβ, Chem. Phys. Lett. 409 (2005) 157-162.
DOI URL |
[33] |
Y. Gohda, S. Schnur, A. Groβ, Faraday Discuss. 140 (2009) 233-244.
DOI URL |
[34] |
S. Yao, X. Zhang, A. Chen, Z. Zhang, M. Jiao, Z. Zhou, J. Mater. Chem. A 7 (2019) 19290-19296.
DOI URL |
[35] |
X. Yang, N. Gao, S. Zhou, J. Zhao, Phys. Chem. Chem. Phys. 20 (2018) 19390-19397.
DOI URL |
[36] |
A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61 (2000) 15019-15027.
DOI URL |
[37] |
J.L. Zhao, W.Q. Zhang, X.M. Li, J.W. Feng, X. Shi, J. Phys. Condens. Matter 18 (2006) 1495-1508.
DOI URL |
[38] | G. Rothenberg, in:Catalysis: Concepts and Green Applications, WILWY-VCH, Weinheim, 2008, p65. Chapter 2. |
[39] |
Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, J. Wang, Chem. Mater. 28 (2016) 4390-4396.
DOI URL |
[40] |
C.J. Chen, C.W. Liu, K.C. Yang, L.C. Yin, D.H. Wei, S.F. Hu, R.S. Liu, ACS Appl. Mater. Interfaces 10 (2018) 37142-37149.
DOI URL |
[41] |
C.J. Chen, V. Veeramani, Y.H. Wu, A. Jena, L.C. Yin, H. Chang, S.F. Hu, R.S. Liu, Appl. Catal. B 263 (2020) 118259.
DOI URL |
[42] |
Z. Chen, X. Liu, J.X. Zhao, Y. Jiao, L.C. Yin, J. Mater. Chem. A 8 (2020) 11986-11995.
DOI URL |
[43] |
Z. Weng, W. Liu, L.C. Yin, R.P. Fang, M. Lo, E.I. Altman, Q. Fan, F. Li, H.M. Cheng, H.L. Wang, Nano Lett. 15 (2015) 7704-7710.
DOI PMID |
[44] |
Y. Zheng, Y. Jiao, Y.H. Zhu, L.H. Li, Y. Han, Y. Chen, A.J. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5 (2014) 3783.
DOI PMID |
[45] |
L. Wang, Y. Shi, M. Liu, A. Zhang, Y. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. Cheng, Y. Li, X. Chen, Nat. Commun. 12 (2021) 2361.
DOI PMID |
[46] |
H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman, A.H. Fragapane, J.H. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X.L. Zheng, Nat. Mater. 15 (2016) 48.
DOI URL |
[47] |
G.L. Ye, Y.J. Gong, J.H. Lin, B. Li, Y.M. He, S.T. Pantelides, W. Zhou, R. Vajtai, P.M. Ajayan, Nano Lett. 16 (2016) 1097-1103.
DOI URL |
[48] | C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Nørskov, X.L. Zheng, F. Abild-Peder- sen, Nat.Commun. 8 (2017) 15113. |
[49] |
F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5 (2011) 26-41.
DOI URL |
[50] |
A. Bafekry, M. Faraji, M. Fadlallah, A . Khatibani, A .Ziabari, M. Ghergherehchi, D. Gogova, Appl. Surf. Sci. 559 (2021) 149862.
DOI URL |
[51] |
S. Liu, Z.D. Li, C.L. Wang, W.W. Tao, M.X. Huang, M. Zuo, Y. Yang, K. Yang, L.J. Zhang, S. Chen, P.P. Xu, Q.W. Chen, Nat. Commun. 11 (2020) 938.
DOI URL |
[52] | D.J. Mowbray, J.I. Martinez, F. Calle-Vallejo, J. Rossmeisl, K.S. Thygesen, K.W. Ja-cobsen, J.K. Nørskov, J.Phys.Chem.C 115 (2011) 2244-2252. |
[53] |
Z.X. Feng, W.T. Hong, D.D. Fong, Y.L. Lee, Y. Yacoby, D. Morgan, Y. Shao-Horn, Acc. Chem. Res. 49 (2016) 966-973.
DOI URL |
[54] |
W. Pei, S. Zhou, Y.Z. Bai, J.J. Zhao, Carbon 133 (2018) 260-266.
DOI URL |
[55] |
L.M. Zhao, S. Guo, H.J. Liu, H.Y. Zhu, S.F. Yuan, W.Y. Guo, ACS Appl. Nano Mater. 1 (2018) 6258-6268.
DOI URL |
[56] |
A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J.G. Zhou, Y. Shao-Horn, Nat. Commun. 4 (2013) 2439.
DOI PMID |
[57] |
M. Retuerto, L. Pascual, F. Calle-Vallejo, P. Ferrer, D. Gianolio, A.G. Pereira, A. Garcia, J. Torrero, M.T.Fernandez-Diaz , P.Bencok, M.A. Pena, J.L.G. Fierro, S. Rojas, Nat. Commun. 10 (2019) 2041.
DOI PMID |
[58] |
R. Jacobs, T. Mayeshiba, J. Booske, D. Morgan, Adv. Energy Mater. 8 (2018) 1702708.
DOI URL |
[59] |
C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J.K. Nørskov, Surf. Sci. 681 (2019) 122-129.
DOI |
[1] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
[2] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[3] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[4] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[5] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[6] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
[7] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[8] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[9] | Yanrong Lv, Chao Han, Ye Zhu, Tianao Zhang, Shuo Yao, Zhangxing He, Lei Dai, Ling Wang. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives [J]. J. Mater. Sci. Technol., 2021, 75(0): 96-109. |
[10] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[11] | Bo Yu, Fei Ma, Dongjiang Chen, Katam Srinivas, Xiaojuan Zhang, Xinqiang Wang, Bin Wang, Wanli Zhang, Zegao Wang, Weidong He, Yuanfu Chen. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries [J]. J. Mater. Sci. Technol., 2021, 90(0): 37-44. |
[12] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[13] | Xiangtao Yu, Xiangyu Ren, Yanwei Zhang, Zhangfu Yuan, Zhuyin Sui, Mingyong Wang. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production [J]. J. Mater. Sci. Technol., 2021, 65(0): 118-125. |
[14] | Xin Wang, Jun Wang, Bin Wei, Nan Zhang, Junyuan Xu, Hongwei Miao, Lifeng Liu, Chenliang Su, Ying Li, Zhongchang Wang. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 78(0): 170-175. |
[15] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||