J. Mater. Sci. Technol. ›› 2021, Vol. 92: 88-97.DOI: 10.1016/j.jmst.2021.03.033
• Research Article • Previous Articles Next Articles
Wanshun Xiaa, Xinbao Zhaoa,*(), Liang Yuea, Quanzhao Yuea,*(
), Jiangwei Wangb, Qingqing Dinga, Hongbin Beia, Ze Zhanga,*(
)
Received:
2020-12-14
Revised:
2021-03-06
Accepted:
2021-03-14
Published:
2021-11-30
Online:
2021-05-08
Contact:
Xinbao Zhao,Quanzhao Yue,Ze Zhang
About author:
zezhang@zju.edu.cn (Z. Zhang).Wanshun Xia, Xinbao Zhao, Liang Yue, Quanzhao Yue, Jiangwei Wang, Qingqing Ding, Hongbin Bei, Ze Zhang. Inconsistent creep between dendrite core and interdendritic region under different degrees of elemental inhomogeneity in nickel-based single crystal superalloys✩[J]. J. Mater. Sci. Technol., 2021, 92: 88-97.
Element | Al | Ta | Co | Cr | Mo | W | Re | Ru | Ni |
---|---|---|---|---|---|---|---|---|---|
Weight percentage (wt.%) | 5-6.5 | 5.5-6.5 | 5.5-6.9 | 2.5-4 | 2.1-3.5 | 5-6.5 | 4-5.5 | 2-3 | Bal. |
Table 1 Rough chemical compositions of material in the present work.
Element | Al | Ta | Co | Cr | Mo | W | Re | Ru | Ni |
---|---|---|---|---|---|---|---|---|---|
Weight percentage (wt.%) | 5-6.5 | 5.5-6.5 | 5.5-6.9 | 2.5-4 | 2.1-3.5 | 5-6.5 | 4-5.5 | 2-3 | Bal. |
Specimen | Heat treatments |
---|---|
S1 | 1613 K/5 h (AC)→1423 K/4 h (AC)→1143 K/20 h (AC) |
S2 | 1613 K/10 h (AC)→1373 K/4 h (AC)→1143 K/20 h (AC) |
Table 2 Heat treatments of S1 and S2. Air cooling (AC) was applied after each procedure.
Specimen | Heat treatments |
---|---|
S1 | 1613 K/5 h (AC)→1423 K/4 h (AC)→1143 K/20 h (AC) |
S2 | 1613 K/10 h (AC)→1373 K/4 h (AC)→1143 K/20 h (AC) |
Fig. 1. Schematic of creep ruptured specimens to conduct SEM and TEM studies. SEM images were taken on longitudinal sections parallel to the tensile axis (σt), while TEM studies were performed on transverse sections normal to stress axis. Regions with 1 mm (Ⅰ), 6 mm (Ⅱ) and 11 mm (Ⅲ) distance to fracture surface were investigated.
Fig. 2. SEM images of heat-treated specimens before the creep test: (a) SEM image on transverse section of S1 showing the typical cruciate dendritic structures; (b) dendritic structures in S2. The γ/γ′ microstructures in dendrite core (D) and interdendritic region (ID) are properly distinguished.
Specimen | S1 | S2 | ||
---|---|---|---|---|
Area | D | ID | D | ID |
fγ′ (%) | 65.4 | 68.3 | 64.8 | 66.3 |
γ′ size (nm) | 307 | 363 | 296 | 314 |
γ width (nm) | 58±24 | 75±19 | 68±15 | 72±13 |
Table 3 Quantitative data of γ/γ′ microstructures in S1 and S2.
Specimen | S1 | S2 | ||
---|---|---|---|---|
Area | D | ID | D | ID |
fγ′ (%) | 65.4 | 68.3 | 64.8 | 66.3 |
γ′ size (nm) | 307 | 363 | 296 | 314 |
γ width (nm) | 58±24 | 75±19 | 68±15 | 72±13 |
W | Ta | Ru | Re | Mo | Cr | Co | Al | ||
---|---|---|---|---|---|---|---|---|---|
$\bar{C}$ | 4.79 | 6.34 | 3.18 | 4.48 | 3.76 | 3.22 | 6.61 | 5.17 | |
S1 | CD | 5.74 | 5.53 | 3.32 | 5.41 | 3.90 | 3.38 | 6.77 | 4.76 |
CID | 3.80 | 7.12 | 2.90 | 3.56 | 3.42 | 3.09 | 6.42 | 5.64 | |
$\bar{C}$ | 4.89 | 6.22 | 3.48 | 4.02 | 3.96 | 3.31 | 6.55 | 6.30 | |
S2 | CD | 5.55 | 5.69 | 3.60 | 4.73 | 4.07 | 3.43 | 6.71 | 5.86 |
CID | 4.37 | 6.74 | 3.38 | 3.41 | 3.87 | 3.19 | 6.39 | 6.69 |
Table 4 Measured compositions in heat-treated S1 and S2 by dot-matrix EDX analysis. While the values of $\bar{C}$ list the average content of each element in the dot-matrix region, the mean content in dendrite core and interdendritic region is given as CD and CID, respectively.
W | Ta | Ru | Re | Mo | Cr | Co | Al | ||
---|---|---|---|---|---|---|---|---|---|
$\bar{C}$ | 4.79 | 6.34 | 3.18 | 4.48 | 3.76 | 3.22 | 6.61 | 5.17 | |
S1 | CD | 5.74 | 5.53 | 3.32 | 5.41 | 3.90 | 3.38 | 6.77 | 4.76 |
CID | 3.80 | 7.12 | 2.90 | 3.56 | 3.42 | 3.09 | 6.42 | 5.64 | |
$\bar{C}$ | 4.89 | 6.22 | 3.48 | 4.02 | 3.96 | 3.31 | 6.55 | 6.30 | |
S2 | CD | 5.55 | 5.69 | 3.60 | 4.73 | 4.07 | 3.43 | 6.71 | 5.86 |
CID | 4.37 | 6.74 | 3.38 | 3.41 | 3.87 | 3.19 | 6.39 | 6.69 |
Fig. 3. Quantitative EDX dot-matrix results of heat-treated S1 and S2: (a) bar charts of number distributions of points in different ranges of absolute segregation coefficients ζi for each element; (b) relative segregation coefficients ζR of each element.
Fig. 4. Creep data of S1 and S2 collected at 1373 K and 137 MPa: (a) curve of displacement x as a function of time t. The inset provides a close sight of the initial stage curves; (b) evolution of area shrinkage Ψ as a function of distance to fracture surface.
Fig. 5. Macroscopic features in regions Ⅰ, Ⅱ and Ⅲ of crept S1 and S2: (a-c) SEM images of S1; (d-f) SEM images of S2. The black and white arrows roughly differentiate the dendrite cores (D) and interdendritic regions (ID). The stress axis of σt is denoted by the right dashed arrows. Local enlargements of areas marked by white dashed boxes are given in the insets of (c) and (e).
Fig. 7. Rafted structures in regions Ⅰ, Ⅱ and Ⅲ of S1 and S2: (a-f) SEM images in dendrite cores (D) and interdendritic regions (ID) of S1; (g-l) SEM images in corresponding regions of S2. The stress axis of σt is denoted by the right dashed arrows.
Fig. 8. Quantitative data of the rafted structures in regions Ⅰ, Ⅱ and Ⅲ of S1 and S2: (a) evolution of volume fraction of γ′ rafts (fγ′) as the function of distance to fracture surface. The dashed line of x = 0 denotes the data of heat-treated materials; (b) evolution of termination ratio R as the function of distance to fracture surface. The dashed horizontal line of R = 1 denotes the start of topological inversion. The black arrow points out the data of 0 for heat-treated materials.
Fig. 9. Dislocation substructures in regions Ⅰ, Ⅱ and Ⅲ of S1 and S2: (a-f) STEM images in dendrite cores (D) and interdendritic regions (ID) of S1; (g-l) STEM images of S2. The rod-like items marked by white arrows are TCP precipitates which are enveloped by zones of γ′ phase. The STEM images were taken under rigid beam direction parallel to [001].
Fig. 10. Dislocation networks in region Ⅲ of S1 and S2: (a-b) STEM images in dendrite core (D) and interdendritic region (ID) of S1; (e-h) STEM images of S2. The STEM images were taken under rigid beam direction parallel to [001].
[1] | W. Betteridge, S.W.K. Shaw, Mater.Sci. Technol. 3 (1987) 682-694. |
[2] |
F.I. Versnyder, M.E. Shank, Mater. Sci. Eng. 6 (1970) 213-247.
DOI URL |
[3] | R. Schafrik, R. Sprague, Adv. Mater. Process. 162 (2004) 33-36. |
[4] |
T.M. Pollock, S. Tin, J. Propul. Power 22 (2006) 361-374.
DOI URL |
[5] | A.J. Elliott, T.M. Pollock, S. Tin, W.T. King, S.C. Huang, M.F.X. Gigliotti, Metall.Mater. Trans. A-Phys. Metall. Mater. Sci. 35 (2004) 3221-3231. |
[6] |
S.R. Hegde, R.M. Kearsey, J.C. Beddoes, Scr. Mater. 57 (2007) 837-840.
DOI URL |
[7] | R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006. |
[8] |
B. Dubiel, I. Kalemba-Rec, A. Kruk, T. Moskalewicz, P. Indyka, S. Kąc, A. Radziszewska, A. Kopia, K. Berent, M. Gajewska, Mater. Charact. 131 (2017) 266-276.
DOI URL |
[9] |
T. Osada, Y.F. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, H. Harada, Acta Mater 61 (2013) 1820-1829.
DOI URL |
[10] |
N. Matan, D.C. Cox, C.M.F. Rae, R.C. Reed, Acta Mater 47 (1999) 2031-2045.
DOI URL |
[11] |
P. Caron, T. Khan, Mater. Sci. Eng., 61 (1983) 173-184.
DOI URL |
[12] | Z.H. Zhong, Y.F. Gu, Y. Yuan, T. Osada, C.Y. Cui, T. Yokokawa, T. Tetsui, H. Harada, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 43A (2012) 1017-1025. |
[13] | H.T. Pang, L. Zhang, R.A. Hobbs, H.J. Stone, C.M.F. Rae, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 43A (2012) 3264-3282. |
[14] | R. Kearsey, S. Hegde, in: Proceedings of the International Sympo-sium on Superalloys, 2008. |
[15] |
H.S. Lee, D.H. Kim, D.S. Kim, K.B. Yoo, J. Alloys Compd. 561 (2013) 135-141.
DOI URL |
[16] |
Y.B. Zhang, L. Liu, T.W. Huang, Y.F. Li, Z.Q. Jie, J. Zhang, W.C. Yang, H.Z. Fu, Scr. Mater. 136 (2017) 74-77.
DOI URL |
[17] |
H.B. Long, S.C. Mao, Y.N. Liu, Z. Zhang, X.D. Han, J. Alloys Compd. 743 (2018) 203-220.
DOI URL |
[18] |
T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40 (1992) 1-30.
DOI URL |
[19] |
M. Probst-Hein, A. Dlouhy, G. Eggeler, Acta Mater 47 (1999) 2497-2510.
DOI URL |
[20] |
M. Kolbe, A. Dlouhy, G. Eggeler, Mater. Sci. Eng. A 246 (1998) 133-142.
DOI URL |
[21] | T.M. Pollock, R.D. Field, in: F.R.N. Nabarro, M.S. Duesbery (Eds.), Dislocations in Solids, Eds., Elsevier, 2002, pp. 547-618. |
[22] |
B. Liu, D. Raabe, F. Roters, A. Arsenlis, Acta Mater 79 (2014) 216-233.
DOI URL |
[23] |
J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, Acta Mater 53 (2005) 4623-4633.
DOI URL |
[24] | T.P. Gabb, S.L. Draper, D.R. Hull, R.A. Mackay, M.V. Nathal, Mater. Sci. Eng. A-Struct.Mater. Prop. Microstruct. Process. 118 (1989) 59-69. |
[25] | R.D. Field, T.M. Pollock, W.H. Murphy, Superalloys 1992, (1992) 557-566. |
[26] |
T.M. Pollock, A.S. Argon, Acta Metall. et Mater. 42 (1994) 1859-1874.
DOI URL |
[27] |
J.Y. Buffiere, M. Ignat, Acta Metallurgica et Materialia 43 (1995) 1791-1797.
DOI URL |
[28] |
M. Véron, Y. Bréchet, F. Louchet, Scr. Mater. 34 (1996) 1883-1886.
DOI URL |
[29] |
F.R.N. Nabarro, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 27 (1996) 513-530.
DOI URL |
[30] |
P. Henderson, L. Berglin, C. Jansson, Scr. Mater. 40 (1998) 229-234.
DOI URL |
[31] |
F.R.N. Nabarro, C.M. Cress, P. Kotschy, Acta Mater 44 (1996) 3189-3198.
DOI URL |
[32] | G. Bruno, B. Schönfeld, G. Kostorz, Zeitschrift fur Metallkunde 94 (2003) 12-18. |
[33] |
D. Dye, J. Coakley, V.A. Vorontsov, H.J. Stone, R.B. Rogge, Scr. Mater. 61 (2009) 109-112.
DOI URL |
[34] |
J.S. Van Sluytman, T.M. Pollock, Acta Mater 60 (2012) 1771-1783.
DOI URL |
[35] |
A. Volek, F. Pyczak, R.F. Singer, H. Mughrabi, Scr. Mater. 52 (2005) 141-145.
DOI URL |
[36] | M.V. Nathal, R.A. Mackay, R.G. Garlick, Mater.Sci.Eng. 75 (1985)195-205. |
[37] |
C. Schulze, M. Feller-Kniepmeier, Mater. Sci. Eng. A 281 (2000)204-212.
DOI URL |
[38] |
A.B. Parsa, P. Wollgramm, H. Buck, A. Kostka, C. Somsen, A. Dlouhy, G. Eggeler, Acta Mater 90 (2015) 105-117.
DOI URL |
[39] | R.C. Reed, D.C. Cox, C.M.F. Rae, Mater.Sci. Technol. 23 (2013) 893-902. |
[40] |
X. Milhet, M. Arnoux, J. Cormier, J. Mendez, C. Tromas, Mater. Sci. Eng. A 546 (2012) 139-145.
DOI URL |
[41] |
H. Mughrabi, Mater. Sci. Technol. 25 (2009) 191-204.
DOI URL |
[42] |
A. Epishin, T. Link, Philos. Mag. 84 (2004) 1979-2000.
DOI URL |
[43] |
R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae, Acta Mater 47 (1999) 3367-3381.
DOI URL |
[44] |
N. Matan, D.C. Cox, P. Carter, M.A. Rist, C.M.F. Rae, R.C. Reed, Acta Mater 47 (1999) 1549-1563.
DOI URL |
[45] |
R. Srinivasan, G.F. Eggeler, M.J. Mills, Acta Mater 48 (2000) 4867-4878.
DOI URL |
[46] |
J.-B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 43 (2012) 3988-3997.
DOI URL |
[47] |
R.A. MacKay, M.V. Nathal, D.D. Pearson, Metall. Trans. A-Phys. Metall. Mater. Sci. 21 (1990) 381-388.
DOI URL |
[48] |
S. Tian, M. Wang, T. Li, B. Qian, J. Xie, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527 (2010) 5444-5451.
DOI URL |
[49] |
A. Epishin, T. Link, U. Brückner, P.D. Portella, Acta Mater 49 (2001) 4017-4023.
DOI URL |
[50] |
J. Coakley, D. Ma, M. Frost, D. Dye, D.N. Seidman, D.C. Dunand, H.J. Stone, Acta Mater 135 (2017) 77-87.
DOI URL |
[51] |
L.A. Jacome, P. Nortershauser, J.K. Heyer, A. Lahni, J. Frenzel, A. Dlouhy, C. Som-sen, G. Eggeler, Acta Mater 61 (2013) 2926-2943.
DOI URL |
[52] |
P. Caron, P.J. Henderson, T. Khan, M. McLean, Scr. Metall. 20 (1986) 875-880.
DOI URL |
[53] | S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, J. Cormier, Mater. Sci. Eng. A-Struct.Mater. Prop. Microstruct. Process. 601 (2014) 145-152. |
[54] | S. Jiang, D. Sun, Y. Zhang, B. Yan, Metals (Basel)8(2018). |
[55] |
A. Janotti, M. Krcmar, C.L. Fu, R.C. Reed, Phys. Rev. Lett. 92 (2004) 085901.
DOI URL |
[56] |
J. Chen, J.K. Xiao, L.J. Zhang, Y. Du, J. Alloys Compd. 657 (2016) 457-463.
DOI URL |
[57] |
Z.K. Zhang, Z.F. Yue, J. Alloys Compd. 746 (2018) 84-92.
DOI URL |
[58] |
V. Biss, G.N. Kirby, D.L. Sponseller, Metall. Trans. A-Phys. Metall. Mater. Sci. 7 (1976) 1251-1261.
DOI URL |
[59] |
K. Cheng, C. Jo, T. Jin, Z. Hu, Mater. Sci. Eng. A 528 (2011) 2704-2710.
DOI URL |
[60] |
J.J. Huo, Q.Y. Shi, Y.R. Zheng, Q. Feng, J. Alloys Compd. 715 (2017) 460-470.
DOI URL |
[61] |
B. Dubiel, P. Indyka, I. Kalemba-Rec, A. Kruk, T. Moskalewicz, A. Radziszewska, S. Kąc, A. Kopia, K. Berent, M. Gajewska, J. Alloys Compd. 731 (2018) 693-703.
DOI URL |
[62] |
D. Qi, L. Wang, P. Zhao, L. Qi, S. He, Y. Qi, H. Ye, J. Zhang, K. Du, Scr. Mater. 167 (2019) 71-75.
DOI URL |
[63] |
D.W. MacLachlan, D.M. Knowles, Mater. Sci. Eng. A 302 (2001) 275-285.
DOI URL |
[64] |
Y.L. Tang, M. Huang, J.C. Xiong, J.R. Li, J. Zhu, Acta Mater 126 (2017) 336-345.
DOI URL |
[65] |
M. Simonetti, P. Caron, Mater. Sci. Eng. A 254 (1998) 1-12.
DOI URL |
[66] |
L.A. Jacome, P. Nortershauser, C. Somsen, A. Dlouhy, G. Eggeler, Acta Mater 69 (2014) 246-264.
DOI URL |
[67] | J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, T. Kobayashi, Proc. Int. Symp. Superalloys (2004) 189-195. |
[68] |
S.M.H. Haghighat, G. Eggeler, D. Raabe, Acta Mater 61 (2013) 3709-3723.
DOI URL |
[69] |
C.M.F. Rae, R.C. Reed, Acta Mater 55 (2007) 1067-1081.
DOI URL |
[70] |
T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater 52 (2004) 3737-3744.
DOI URL |
[71] |
H. Rouault-Rogez, M. Dupeux, M. Ignat, Acta Metall. Mater. 42 (1994) 3137-3148.
DOI URL |
[72] |
J. Coakley, R.C. Reed, J.L.W. Warwick, K.M. Rahman, D. Dye, Acta Mater 60 (2012) 2729-2738.
DOI URL |
[73] |
V. Sass, U. Glatzel, M. Feller-Kniepmeier, Acta Mater 44 (1996) 1967-1977.
DOI URL |
[74] |
M. Huang, Z. Cheng, J. Xiong, J. Li, J. Hu, Z. Liu, J. Zhu, Acta Mater 76 (2014) 294-305.
DOI URL |
[75] |
Q.Q. Ding, S.Z. Li, L.Q. Chen, X.D. Han, Z. Zhang, Q. Yu, J.X. Li, Acta Mater 154 (2018) 137-146.
DOI URL |
[76] |
J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, S. Masaki, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 33 (2002) 3741-3746.
DOI URL |
[77] | J.X. Zhang, Y. Koizumi, T. Kobayashi, T. Murakumo, H. Harada, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 35A (2004) 1911-1914. |
[78] |
J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Scr. Mater. 48 (2003) 287-293.
DOI URL |
[79] |
C. Mayr, G. Eggeler, A. Dlouhy, Mater. Sci. Eng. A 207 (1996) 51-63.
DOI URL |
[80] |
G. Eggeler, A. Dlouhy, Acta Mater 45 (1997) 4251-4262.
DOI URL |
[81] |
J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, Acta Mater 51 (2003) 5073-5081.
DOI URL |
[82] | C.L. Fu, R. Reed, A. Janotti, M. Krcmar, Superalloys (2004) 867-876 2004. |
[83] |
H.U. Rehman, K. Durst, S. Neumeier, A.B. Parsa, A. Kostka, G. Eggeler, M. Go-ken, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 634 (2015) 202-208.
DOI URL |
[84] |
S. Gao, Y. Zhou, C.-.F. Li, J. Cui, Z.-.Q. Liu, T. Jin, J. Alloys Compd. 610 (2014) 589-593.
DOI URL |
[1] | Wei Song, Xinguang Wang, Jinguo Li, Jie Meng, Yanhong Yang, Jinlai Liu, Jide Liu, Yizhou Zhou, Xiaofeng Sun. Influence of Ta/Al ratio on the microstructure and creep property of a Ru-containing Ni-based single-crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 89(0): 16-23. |
[2] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
[3] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[4] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
[5] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
[6] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[7] | Min Yang, Jun Zhang, Weimin Gui, Songsong Hu, Zhuoran Li, Min Guo, Haijun Su, Lin Liu. Coupling phase field with creep damage to study γʹ evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 129-137. |
[8] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[9] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[10] | Wanshun Xia, Xinbao Zhao, Liang Yue, Ze Zhang. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 76-95. |
[11] | Yong-Xin Yang, Zhe Fang, Yi-Hao Liu, Ya-Chen Hou, Li-Guo Wang, Yi-Fan Zhou, Shi-Jie Zhu, Rong-Chang Zeng, Yu-Feng Zheng, Shao-Kang Guan. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent [J]. J. Mater. Sci. Technol., 2020, 46(0): 114-126. |
[12] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[13] | Peng Yu, Weimin Ma. A modified theta projection model for creep behavior of RPV steel 16MND5 [J]. J. Mater. Sci. Technol., 2020, 47(0): 231-242. |
[14] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[15] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||